
OpenFisca
Release

Nov 21, 2018

Contents

1 Introduction 3

2 Key concepts 5

3 From law to code 13

4 OpenFisca Web API 43

5 Troubleshooting 51

6 Recipes for OpenFisca 53

7 Publishing results based on OpenFisca 59

8 Community 61

9 Contribute 63

10 Openfisca Python API 75

Python Module Index 95

i

ii

OpenFisca, Release

Download a PDF offline version of this documentation.

Contents 1

https://media.readthedocs.org/pdf/openfisca-doc/latest/openfisca-doc.pdf

OpenFisca, Release

2 Contents

CHAPTER 1

Introduction

OpenFisca transforms legislation into code.

OpenFisca allows you to:

• Calculate many variables of the tax and benefit system of a country given input variables.

OpenFisca can calculate social benefits and taxes on test cases (a person or a household).

• Simulate the budgetary consequences of a reform and its distributional impact when plugged on a survey.

OpenFisca can calculate social benefits and taxes on population data (real data or survey data).

Its engine is independent of the country, it is therefore possible to simulate any country. It behaves as microsimulation
software with improved ties to legislation.

For a deep dive into the context and difficulties that are encountered when modelling legislation as code
that OpenFisca aims at solving, read the Better Rules for Government report.

OpenFisca is free software published under the GNU Affero General Public Licence version 3 or later. It is written in
the Python programming language (compatible with version 3.7).

Project Components

OpenFisca is a modular project. Depending on your goals, you will install and interact with one or several of the
OpenFisca Components.

Web API

The Web API lets you access the legislation Parameters and Variables.

Example: Mes Aides uses the OpenFisca Web API to calculate OpenFisca-France benefits.

• To explore the OpenFisca-France Web API services, use the French Legislation Explorer

• To query the Openfisca Web API in your app, see the Web API endpoints description

3

https://openfisca.org/
https://en.wikipedia.org/wiki/Microsimulation
https://www.digital.govt.nz/showcase/better-rules-for-government-discovery-report
https://openfisca.org/
https://www.gnu.org/licenses/agpl.html
http://www.python.org/
https://mes-aides.gouv.fr
https://fr.openfisca.org/legislation/

OpenFisca, Release

• To host your own instance of the Openfisca API, go to the installation documentation

Extensions Packages

Extensions add on the capacities of a country-package.

Example: See Paris extension and Rennes extension on top of OpenFisca France.

• To install an Extension, head to the Extensions documentation

Country package

Country Packages are the basic modules of OpenFisca. They define the Parameters, Entities and Variables of a country.

• To install an existing Country Package, head to that package’s documentation.

Example: Openfisca-france’s repository

OpenFisca Core

OpenFisca-Core is the main engine: it is the common interface to every Country Package. It binds the Country
Package(s), Extension(s) and the engine together. OpenFisca-Core is also where the API is packaged.

• To install OpenFisca-Core, read the OpenFisca-core Documentation.

What’s the purpose?

OpenFisca is more a platform than an application: its first target is not the end user but economists, software develop-
ers, researchers, teachers, administrations, interested citizens, etc.

Final products can be built on the top of OpenFisca, mainly to compute tax and benefit variables through the web API.
For example: Mes aides allows French citizens to assess their entitlement to social benefits across agencies.

Another use can be to improve the discoverability and readability of law, using reflexivity possibilities demonstrated
by the legislation explorer.

Independent researchers can use OpenFisca to publish articles exploring the impact of reforms, focusing on testing
hypotheses rather than on modelling. For example, the impact of changing how children are taken into account for
social benefits or of creating a universal basic income in France. NGOs can also use that same power to back their
own suggestions.

The project is 100% free software, it is published on GitHub. It uses the GitHub infrastructure (issues, pull requests,
etc.) to communicate internally or with external participants. The team discusses publicly on those issues and pull
requests as transparently as possible.

The project has many contributors: many people and organizations are involved in the project, reading the legislation
and transforming it into source code, developing the Core or web tools, developing external products, etc.

Among them: Etalab, the Incubateur des services numériques, the IPP, the IDEP, the MSA, and France Stratégie.

4 Chapter 1. Introduction

https://github.com/sgmap/openfisca-paris
https://github.com/sgmap/openfisca-rennesmetropole
https://github.com/openfisca/openfisca-france
https://github.com/openfisca/openfisca-core
https://mes-aides.gouv.fr/
https://fr.openfisca.org/legislation/
https://www.idep-fr.org/sites/default/files/idep/idep_analyses_n6.pdf
https://www.idep-fr.org/sites/default/files/idep/idep_analyses_n6.pdf
https://www.ipp.eu/projet/simulation-dun-revenu-de-base/
https://www.revenudebase.info/2017/04/07/apprehender-cout-dun-revenu-de-base/
https://github.com/openfisca
https://www.etalab.gouv.fr/
https://beta.gouv.fr/
https://www.ipp.eu/
https://www.idep-fr.org/
http://www.msa.fr/
http://www.strategie.gouv.fr/

CHAPTER 2

Key concepts

Tax and Benefit System

Definition

The tax and benefit system is the higher-level instance in OpenFisca. Its goal is to model the legislation of a country.

Basically a tax and benefit system contains simulation variables (source code) and legislation parameters (data).

This instance may host as many versions as there are countries in the world.

The OpenFisca core engine is able to simulate any country legislation once it is (partially) represented as
source code.

Therefore you have to instantiate and use the version corresponding to your country of interest.

Application: how to call the Python module

The system for France is currently the only one well implemented, so your first action should be:

Call module describing the French System
from openfisca_france import FranceTaxBenefitSystem

Initialize the legislation
tax_benefit_system = FranceTaxBenefitSystem()

Variables and formulas

A variable is property of a person, or an entity (e.g. a family).

For instance:

5

OpenFisca, Release

• The birth date of a person

• The amount of basic income (in France, RSA) a family can get in a month.

• The amount of income tax a household has to pay in a year.

• Whether a family is living in Paris, or not.

Input variables

Some variables can only be given as inputs of a simulation. For instance, the birth date of a person.

Formulas

Other variables can be calculated thanks to a formula.

A formula is a function that calculates the value of given variable, for a given period. To do so, it performs (usually
arithmetic) operations on the values of other variables, the formula dependencies.

For instance:

• The basic income of a family can be calculated from its income, and some other information about its situation.

• The income tax of a tax household can be calculated the same way.

It is important to note that all variables can be used as inputs. This means that even if the basic income can be
calculated from other variables, I can, for a given simulation, provide it as an input. Then, if another formula asks
for the value of basic income for a month, the input value will be returned, and the basic income formula won’t be
executed.

Default values

When OpenFisca is not able to calculate the value of a variable for a requested period, it returns a default value.

The default value of a variable is returned:

• When the value of an input variables is requested, if this variable has not been set in the input for the requested
period.

For example: Let’s assume the input variable student default value is False. If the value of
student for 2017-09 has not been set in the input of the simulation, then computing student
for 2017-09 will return False.

• When the value of a variable with formulas is requested, if no formula is defined for the requested period.

For example: Let’s assume the variable basic_income‘s formula is defined starting
2015-01-01, and its default value is 0. Computing basic_income for 2014-01-01 will
return 0, while computing basic_income for 2015-01-01 will use the formula.

Legislation writers can define a specific default value for each variable.

Parameters

A parameter is a numeric property of the legislation which can evolve over time.

Unlike a variable, a parameter is not specific to a specific person or family.

For instance:

6 Chapter 2. Key concepts

OpenFisca, Release

• The amount of the minimum wage

• The amount of family allowance per children

• The marginal tax scale used to calculate the income tax

Parameters are used in formulas to calculate variable values.

Read more about their implementation in OpenFisca

Person, entities, role

Taxes and benefits can be calculated for different entities: persons, household, companies, etc.

Person

Some openfisca variables are defined for a person.

Example: a “salary” is defined as the individual level.

Group entities

Group entities are clusters of persons such as the family, the household or the company. A tax and benefit system can
define several entities and specifies each time which tax and benefit applies to which entity.

In France the legislation has these group entities:

• "familles", (families)

• "foyers_fiscaux" (tax homes) and

• "menages" (households).

Example: the “local tax” is calculated over the "menages".

Roles

Each person related to a group entity has a role inside this entity.

The roles are:

• for ‘familles‘: parents and enfants (children),

• for ‘foyers_fiscaux‘: declarants (registrants) and personnes_a_charge (dependants),

• for ‘menages‘: personne_de_reference (reference person), conjoint, enfantsand autres
(other).

You can define as many entities as you want and dispatch persons into them.

Application: module used by OpenFisca

The entities definitions are closely related to a country, therefore they are defined in a Python package (OpenFisca-
France) independent from the core engine (OpenFisca-Core).

2.4. Person, entities, role 7

https://fr.openfisca.org/legislation/salaire_net
https://fr.openfisca.org/legislation/taxe_habitation

OpenFisca, Release

Periods, Instants

Most of the values calculated in OpenFisca, such as an income tax, or a housing allowance, can change over time.

In simulations, parameters and variables, OpenFisca handles time via periods and instants.

• Instant: the atomic unit is a day, so instants are day dates.

Example: the 15th June 2015.

• Period: a succession of days.

Example: a month (“July 2015”), a year (“2015”), several months (“July and August 2015”) or the eternity.

The smallest unit for OpenFisca periods is the month. Therefore:

• All periods are presumed to start on the first day of their first month.

• A period cannot be smaller than a month.

The largest unit for OpenFisca periods is the eternity, which is used for variables that are constant over time, e.g. a
date of birth.

Read more about the periods implementation in OpenFisca

Input Data

You can use OpenFisca with two kind of input information:

• either test case: you simulate the legislation for one standard situation

• or data: you give a whole population (survey with aggregated data for example) on which you want to apply the
legislation.

Scenario

The interface between input information and input variables that OpenFisca can handle is called Scenario.

Technically speaking, OpenFisca is using vector computing for performance reasons via the NumPy
Python package

Whatever the input is, test case or data, the scenario converts it into vectors internally.

Application: how to create a scenario

After initializing the Tax and Benefit System, you now want to create a scenario that will allow you in a second step to
give input information.

Create a scenario
scenario = tax_benefit_system.new_scenario()

8 Chapter 2. Key concepts

http://www.numpy.org/

OpenFisca, Release

Test cases

Test case describes persons and entities with their input variables or attributes.

You may add information at individual level or at entity level. One input is crucial and shouldn’t be forgotten: the
period of the simulation.

Application: how to initialize a scenario

Test cases can be expressed in Python or in JSON when using the Web API (see the specific section of the documen-
tation).

In Python you have to use the init_single_entity function based on the scenario. To give to every person of
your test case attributes, you have to use the Python dictionnary object.

We show here the Python expression for a family constituted by:

• two parents (with attributes: her age or her date_naissance and her salaire_de_base),

• two children (with attribute: their age),

• a house (with attributes: the loyer and the statut_occupation_logement)

Initialize test case
scenario.init_single_entity(

period = 2015,
Variable describing the individuals

parent1 = dict(
age = 30,
salaire_de_base = 15000, # Annual basis
),

parent2 = dict(
date_naissance = date(1980, 1, 1),
salaire_de_base = 70000, # Annual basis
),

enfants = [
dict(age = 12),
dict(age = 18),
],

Variable describing the entity
menage = dict(loyer = 12000, # Annual basis

statut_occupation_logement = u"Locataire ou sous-locataire
d'un logement loué vide non-HLM",

),
)

Notice that some input variables are associated to individus (“parent1” , “parent2” and “children”) whereas other are
related to entity (“menage”).

WARNING: Declare the input variables on an annual basis.

HINT: For categorical variable you may use either the modality or its number. Example with the statut d’occupation
du logement:

Declaration of categorical variable
menage = dict(loyer = 12000,

statut_occupation_logement = 4,
)

2.6. Input Data 9

https://fr.openfisca.org/legislation/statut_occupation_logement
https://fr.openfisca.org/legislation/statut_occupation_logement

OpenFisca, Release

Data

Using data as input is not documented yet. Please consult this repository: https://github.com/openfisca/openfisca-
france-data

Simulation, Computation

Simulation: the framework of computation

A Simulation is basically the OpenFisca frame for calculating taxes or benefits.

To calculate any variable you need to create a Simulation from the TaxBenefitSystem that is to say the framework where
you will compute your result.

Technically speaking it is the cache of input data and previously computed results.

It’s possible to run many independent simulations using the same TaxBenefitSystem.

Application: how to launch a simulation

As soon as you’ve loaded the TaxBenefitSystem of a country and a Scenario, you may now create a simulation.

Create a simulation from a scenario
simulation = scenario.new_simulation()

Computing variables

Now all the settings are given to run computation of taxes or benefits.

WARNING: Be aware of the period over which you want to have your result. Some measures are calculated on a
monthly basis other an annual one.

For further information: see the tutorial “How to handle periods”

Application: how to calculate a variable

Calcul of the 'impot sur le revenu des personnes physiques'
impot = simulation.calculate('irpp', '2015')
allocations_familiales = simulation.calculate('af', '2015-01')

HINT: Don’t forget to give the period.

The output is an array:

• positive if it is an amount the entity receives from the state.

• negative if it is an amount the entity has to pay.

10 Chapter 2. Key concepts

http://mybinder.org:/repo/openfisca/tutorial

OpenFisca, Release

Reforms

OpenFisca can be used to evaluate the quantitative impact of legislation changes.

You may for instance use it to determine who would win or lose from an income tax reform, what would be the impact
of a social welfare redesign, or how to finance a universal basic income.

To do so, we use OpenFisca reforms. A reform is a set of modifications to be applied to a reference tax and benefit
system. It generates a reformed tax and benefit system that slightly differs from the original one. We can then run
calculations on both of them, and compare results.

To use reforms or code your own ones, check the reform documentation.

Note that OpenFisca simulates only the mechanics of taxes and benefits, but doesn’t take into account the
retro-action of economic agents. For instance, you can estimate the increase of the households disposable
income in case a universal basic income is introduced, but OpenFisca won’t tell you anything about the
consumption increase this policy may generate.

Differences between reforms and extensions

Reforms are sometimes confused with another mechanism: extensions. These two mechanisms do not have the same
purpose:

• Use a reform if you want to modify a tax and benefit system in order to study the impact of a legislation change.

• Use an extension if you want to write formulas that are based on a main tax and benefit system, while keeping
their code separated from the main country package (e.g. for local prestations).

This section presents the key concepts required to have a good understanding of OpenFisca, without being too techni-
cal.

The first entries are dedicated to the definitions of the structure of OpenFisca:

• Tax and Benefit System as the matrix of the software

• Variables

• Parameters

• Person, entities, role

• Periods, Instants

Input Data Section gives an insight on the data used to compute in OpenFisca.

• Input Data

Last sections present different applications of OpenFisca.

• Simulation, Computation

• Reforms

We use the French legislation to illustrate these concepts as it is the only actively maintained country for now. French
names are kept as it is.

2.8. Reforms 11

OpenFisca, Release

12 Chapter 2. Key concepts

CHAPTER 3

From law to code

Coding a formula

Basic Example

The following piece of code creates a variable named flat_tax_on_salary, representing an imaginary tax of
25% on salaries, paid monthly by individuals (not households).

class flat_tax_on_salary(Variable):
value_type = float
entity = Person
definition_period = MONTH
label = u"Individualized and monthly paid tax on salaries"

def formula(person, period):
salary = person('salary', period)
return salary * 0.25

Let’s explain in details the different parts of the code:

The variable name

class flat_tax_on_salary(Variable): declares a new variable named flat_tax_on_salary. You
can check out our recommended naming conventions.

The variable attributes

All variables have a set of attributes.

• value_type defines the type of the formula output. Possible types are the basic python types. Note however
that OpenFisca uses NumPy to run calculations vectorially, so the actual type of data may be slightly different
from the builtin Python ones. Available types are :

13

OpenFisca, Release

– bool: boolean

– date: date

– Enum: discrete value (from an enumerable). See details in the next section.

– float: float (Note that to reduce memory usage, float are stored on 32 bits using NumPy’s float32)

– int: integer

– str: string

• entity defines who or what group the variable concerns, e.g. individuals, households, families.

• definition_period defines the period on which the variable is calculated. It can be MONTH (e.g. salary),
YEAR (e.g. income taxes), or ETERNITY (e.g. date of birth)

• label is a human friendly way to describe the variable

• reference is a list of relevant legislative reference for this variables (usually URLs the text of the law or
another trustworthy source)

The formula

• def formula(person, period): declares the formula that will be used to calculate the
flat_tax_on_salary for a given person at a given period. Because definition_period =
MONTH, period is constrained to be a month.

• salary = person('salary', period) calculates the salary of the person, for the given month. This
will, of course, work only if salary is another variable in the tax and benefit system.

• return salary * 0.25 returns the result for the given period.

• Dated Formulas have a start and/or an end date.

Testing a formula

To make sure that the formula you have just written works the way you expect, you have to test it. Tests about
legislation are written in a YAML syntax. The flat_tax_on_salary formula can for instance be tested with the
following test file:

- name: "Flax tax on salary - No income"
period: 2017-01
input_variables:
salary: 0

output_variables:
flat_tax_on_salary: 0

- name: "Flax tax on salary - With income"
period: 2017-01
input_variables:
salary: 2000

output_variables:
flat_tax_on_salary: 500

You can check the YAML tests documentation to learn more about how to write YAML tests, and how to run them.

14 Chapter 3. From law to code

OpenFisca, Release

Example with legislation parameters

To access a common legislation parameter, a third parameter can be added to the function signature. The previous
formulas could thus be rewritten:

class flat_tax_on_salary(Variable):
value_type = float
entity = Person
label = u"Individualized and monthly paid tax on salaries"
definition_period = MONTH

def formula(person, period, parameters):
salary = person('salary', period)

return salary * parameters(period).taxes.salary.rate

parameters is here a function that be be called for a given period, and returns the whole legislation parameters (in a
hierarchical tree structure). You can get the parameter you are interested in by navigating this tree with the . notation.

Introducing an input variable

The syntax to introduce an input variable is very similar to the one we used to code a formula.

For instance:

class salary(Variable):
value_type = float
entity = Person
label = u"Salary earned by a person for a given month"
definition_period = MONTH

The only difference is that we do not have a formula to calculate the value of a variable.

If we ask the value of salary for a given month, the returned result will be:

• The input that was provided when initializing the simulation if it exists.

• The default value of the Variable if no input has been provided.

Setting a default value

When declaring an input variable, you can change its default value by adding the default_value attribute:

class french_citizen(Variable):
value_type = bool
default_value = True
entity = Person
label = u"Whether the person is a French citizen"
definition_period = YEAR

If you do not explicitly define a default value, the following will be used:

• For numeric variables: 0.

• For boolean variables: False.

3.2. Introducing an input variable 15

OpenFisca, Release

Advanced example: enumerations (enum)

Usecases

Enumerations are variables that have a limited set of possible values. For instance:

• A person’s relationship status: married, single, divorced.

• A household housing occupancy status: owner, tenant, free-lodger, homeless.

• The main occupation of a person: employee, freelance, retired, student, unemployed.

Defining and using an enumeration variable

As an example, let’s code a housing_tax that is paid by households who own or rent their main homes, but does
not apply to households that do not have a stable residence, or are accommodated for free.

The variable housing_tax will thus depend on housing_occupancy_status, an enumeration variable that
can take 4 values: tenant, owner, free_lodger and homeless.

First, we can create an enumerated type HousingOccupancyStatus:

class HousingOccupancyStatus(Enum):
tenant = u'Tenant or lodger who pays a rent'
owner = u'Owner'
free_lodger = u'Free logder'
homeless = u'Homeless'

OpenFisca enums are based on Python 3 native enums. Each enum item (for instance
HousingOccupancyStatus.tenant) has:

• a name attribute that contains its key (e.g. tenant)

• a value attribute that contains its description (e.g. "Tenant or lodger who pays a
monthly rent")

Then, create an OpenFisca variable housing_occupancy_status:

class housing_occupancy_status(Variable):
value_type = Enum
possible_values = HousingOccupancyStatus
default_value = HousingOccupancyStatus.tenant # The default is mandatory
entity = Household
definition_period = MONTH
label = u"Legal housing situation of the household concerning their main residence

→˓"

You can now use the enum in variable formulas !

For instance, assuming the enumeration and the formula using it are defined in the same file:

class housing_tax(Variable):
value_type = float
entity = Household
definition_period = MONTH.
label = u"Tax paid by each household proportionnally to the size of its

→˓accommodation"

def formula(household, period, legislation):
accommodation_size = household('accomodation_size', period)

16 Chapter 3. From law to code

https://en.wikipedia.org/wiki/Enumerated_type

OpenFisca, Release

housing_occupancy_status = household('housing_occupancy_status', period)
tenant = (housing_occupancy_status == HousingOccupancyStatus.tenant)
owner = (housing_occupancy_status == HousingOccupancyStatus.owner)

The tax is applied only if the household owns or rents its main residency
return (owner + tenant) * accommodation_size * 10

If the enumeration and the formula using it are not defined in the same file, an extra step is necessary:

class housing_tax(Variable):
value_type = float
entity = Household
definition_period = MONTH.
label = u"Tax paid by each household proportionnally to the size of its

→˓accommodation"

def formula(household, period, legislation):
accommodation_size = household('accomodation_size', period)
housing_occupancy_status = household('housing_occupancy_status', period)
HousingOccupancyStatus = housing_occupancy_status.possible_values # "Import"

→˓the enum type. Careful: do not use python imports accross variables files:
→˓comparisons would not work !

tenant = (housing_occupancy_status == HousingOccupancyStatus.tenant)
owner = (housing_occupancy_status == HousingOccupancyStatus.owner)

The tax is applied only if the household owns or rents its main residency
return (owner + tenant) * accommodation_size * 10

You can now test the formula in a YAML test:

- name: Household with free lodger status living in a 100 sq.meters accomodation
period: 2017
input_variables:
accomodation_size:

2017-01: 100
housing_occupancy_status:

2017-01: free_lodger
output_variables:
housing_tax: 0

Vectorial computing

OpenFisca calculation are all vectorial. That means they operate on arrays rather than single (“scalar”) values.

The practical benefit is that computations are almost as expensive for one entity as they are for hundred thousands.
This is how datasets can be analysed and how reforms can be modelled accurately. However, to support this feature,
you will need to apply some constraints on how you write formulas.

Formulas always return vectors

Each formula computation in OpenFisca must return a vector.

For instance, for a simulation containing 3 persons whose ages are 41, 42 and 45, executing the following formula:

3.3. Vectorial computing 17

OpenFisca, Release

def formula(persons, period, parameters):
age = persons('age', period)
print(age)
... do some computation and return a value

will print array([41, 42, 45]).

This formula code will work the same if there is one Person or three or three million in the modelled situation. Formu-
las always receive as their first parameter an array of the entity on which they operate (e.g. n Person, Household. . .)
and they should return an array of the same length.

Most of the time, formulas will refer to other variables and NumPy will do the appropriate computation without you
even noticing:

def formula(persons, period, parameters):
tax_rebate = parameters(period).tax_rebate # let's say this is 500
eligibility_multiplier = persons('eligibility_multiplier', period) # and this is

→˓[2, 0, 1]: there are three Persons
return eligibility_multiplier * tax_rebate # this is [1000, 0, 500]. We've

→˓returned a vector, yay!

What happens if you don’t return a vector

As programmers, we more often work with scalars than vectors. We thus have a tendency to write straightforward
code that returns a scalar rather than a unidimensional vector (in other words, an array of length 1), and get stuck when
wanting to loop over it:

THIS IS NOT A VALID OPENFISCA FORMULA
def formula(persons, period, parameters):

tax_rebate = parameters(period).tax_rebate # let's say this is worth 500
rebate_threshold = tax_rebate * persons[0].eligibility_multiplier # so this is

→˓1000; see how we've accidentally left out other Persons?
return rebate_threshold # and this returns 1000. But it's not a vector!

OpenFisca will help you notice this mistake by raising an error:

The formula ‘tax_rebate@2018’ should return a NumPy array; instead it returned ‘1000.0’ of type ‘float’.

In a similar fashion, if you expect a formula to return a boolean and forget that you will actually get an array of boolean
values (one for each entity in the situation), you will receive the following safeguard error:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all().

The rest of this page gives practical replacements for situations in which you get such errors.

Control structures

Some usual control structures such as if...else, switch, and native Python logical operators such as or and
not do not work with vectors. Semantically however, they all have alternatives, and the only change is in syntax.

if / else

Let’s say you want to write that logically reads as:

18 Chapter 3. From law to code

OpenFisca, Release

THIS IS NOT A VALID OPENFISCA FORMULA
def formula(person, period):

salary = person('salary', period)
if salary < 1000:

return 200
else:

return 0

This code does not work: it makes the assumption that there is always one single person, and that its salary is provided
as a number, while salary is actually a vector of salaries that could be of any length.

In such a case, apply the comparison to the vector of salaries, which will create a vector of booleans, and then multiply
it:

def formula(persons, period):
condition_salary = persons('salary', period) < 1000
return condition_salary * 200

What happens is that for every Person in persons, if condition_salary is True (equivalent to 1 in logical
algebra), the returned value will be 200. And if condition_salary is False (equivalent to 0), the returned
value will be 0.

Ternaries

Let’s now write a formula that returns 200 if the Person’s salary is lower than 1000, and 100 otherwise.

The NumPy function where offers a simple syntax to handle these cases.

def formula(persons, period):
condition_salary = persons('salary', period) < 1000
return where(condition_salary, 200, 100)

where takes 3 arguments: a vector of boolean values (the “condition”), the value to set for this element in the vector
if the condition is met, and the value to set otherwise.

This where function is provided directly by NumPy. There are many other NumPy functions provided that can be
useful.

Multiples conditions

Let’s consider a more complex case, where we want to attribute to a person:

• 200 if their salary is less than 500;

• 100 if their salary is strictly more than 500, but less than 1000;

• 50 if their salary is strictly more than 1000, but less than 1500;

• 0 otherwise.

We can use the NumPy function select to implement this behaviour:

def formula(person, period):
salary = person('salary', period)
return select(

[salary <= 500, salary <= 1000, salary <= 1500, salary > 1500],
[200, 100, 50, 0],
)

3.3. Vectorial computing 19

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/routines.math.html#sums-products-differences
https://docs.scipy.org/doc/numpy/reference/generated/numpy.select.html

OpenFisca, Release

If the first condition is met, the first value will be assigned, without considering the other conditions. For instance, if
salary = 100, salary <= 500 is true and therefore 200 will be assigned. It doesn’t matter that salary <=
1000 is also true.

If the first condition is not met, then only the second condition will be considered, and so on. If no condition is met, 0
will be assigned.

Complex conditions

If no NumPy function helps you express a very specific condition, you can code arbitrary conditions using * instead
of and, and + instead of or.

For instance, let’s consider that a person will be granted 200 if either:

• they are more than 25 and make less than 1000 per month;

• or they are disabled.

def formula(person, period):
condition_age = person('age') >= 25
condition_salary = person('salary', period) < 1000
condition_handicap = person('handicap')
condition = condition_age * condition_salary + condition_handicap
return condition * 200

You should always use NumPy function such as where and select when they are relevant: logical
operations using arithmetic operators should be used as last resort as they are not very readable.

Arithmetic operations

Basic arithmetic operations such as + or * behave the same way on vectors than on numbers, you can thus use them
in OpenFisca formulas. However, some operations must be adapted.

Boolean operations

String concatenation

The + operator, as well as formatted %s strings for concatenation should be replaced by a call to concat(x, y).

Periods and instants

A period can be a month, a year, n successive months, n successive years or the eternity. The smallest unit for
OpenFisca periods is the month. Therefore:

• All periods are presumed to start on the first day of their first month.

• A period cannot be smaller than a month.

An Instant is a specific day, such as a cutoff date.

Internally, periods are stored as:

• a start instant

• a unit (MONTH, YEAR)

20 Chapter 3. From law to code

https://docs.scipy.org/doc/numpy/reference/routines.math.html#sums-products-differences
https://docs.scipy.org/doc/numpy/reference/routines.math.html#sums-products-differences
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.select.html

OpenFisca, Release

• a quantity of units.

Periods in simulations

In OpenFisca inputs, periods are encoded in strings. All the valid period formats are referenced in this table:

This YAML test on income_tax evolution over time shows periods’ impact on a variable

- name: Income tax over time
period: 2016-01
input_variables:
salary:

year:2014:3: 100000 # This person earned 100,000 between 2014 and 2016
output_variables:
income_tax:

2014-01: 388.8889
2015-01: 416.6667 # The income tax rate changes in 2015
2016-01: 416.6667
2017-01: 0 # The salary is not set for this period and defaults to 0

Periods in variable definition

class salary(Variable):
value_type = float
entity = Person
label = u"Salary for a month"
definition_period = MONTH

def formula(person, period):
...

Most of the values calculated in OpenFisca, such as income_tax, and housing_allowance, can change over
time.

Therefore, all OpenFisca variables have a definition_period attribute:

• definition_period = MONTH: The variable may have a different value each month. For example, the
salary of a person. When formula is executed, the parameter period will always be a whole month. Trying
to compute salary with a period that is not a month will raise an error before entering formula.

• definition_period = YEAR: The variable is defined for a year or it has always the same value every
months of a year. For example, if taxes are to be paid yearly, the corresponding variable is yearly. When
formula is executed, the parameter period will always be a whole year (from January 1st to December
31th).

• definition_period = ETERNITY: The value of the variable is constant. For example, the date of birth
of a person never changes. period is still the 2nd parameter of formula. However when formula is
executed, the parameter period can be anything and it should not be used.

Each formula calculates the value of a variable for a period the size of the given definition period. This period is
always the second argument of the formulas.

Periods in formulas

3.4. Periods and instants 21

OpenFisca, Release

Calculate dependencies for a period different than the variable’s definition_period

Calling a formula with a period that is incompatible with the attribute definition_period will cause an error.
For instance, if we assume that a person salary is paid monthly:

class taxes(Variable):
value_type = float
entity = Person
label = u"Taxes for a whole year"
definition_period = YEAR

def formula(person, period): # period is a year because definition_period = YEAR
salary_past_year = person('salary', period) # salary is a montly variable.

→˓This will cause an error.
...

However, sometimes, we do need to estimate a variable for a different period than the one it is defined for.

We may for example want to get the sum of the salaries perceived on the past year, or the past 3 months. The option
ADD tells openfisca to split the period into months, compute the variable for each month and sum up the results:

class taxes(Variable):
value_type = float
entity = Person
label = "Taxes for a whole year"
definition_period = YEAR

def formula(person, period): # period is a year because definition_period = YEAR
salary_last_year = person('salary', period, options = [ADD])
...

The option DIVIDE allows you to do the opposite: evaluating a quantity for a month while the variable is defined
for a year. OpenFisca computes the variable for the whole year that contains the specified month and then divides the
result by 12.

class salary_net_of_taxes(Variable):
value_type = float
entity = Person
label = u"Monthly salary, net of taxes"
definition_period = MONTH

def formula(person, period): # period is a month because definition_period =
→˓MONTH

The variable taxes is computed on a year, monthly_taxes equals the 12th of
→˓that result

monthly_taxes = person('taxes', period, options = [DIVIDE])

salary is a monthly variable, period is a month: no option is required
salary = person('salary', period)

return salary - monthly_taxes

Calculate dependencies for a specific period

It happens that the formula to calculate a variable at a given period needs the value of another variable for another
period. Usually, the second period is defined relatively to the first one (previous month, last three month, current year).

22 Chapter 3. From law to code

OpenFisca, Release

For instance, we want to compute an unemployment benefit that equals half of last year’s salary, if the person had no
income for the past 3 months.

class unemployment_benefit(Variable):
value_type = float
entity = Person
label = u"Unemployment benefit"
definition_period = MONTH

def formula(person, period):
salary_last_3_months = person('salary', period.last_3_month)
salary_last_year = person('salary', period.last_year)

is_unemployed = (salary_last_3_months == 0)
return 0.5 * salary_last_year * is_unemployed

You can generate any period with the following properties and methods:

You can find more information on the Period object in the reference documentation (not available yet)

set_input: Automatically process variable inputs defined for periods not match-
ing the definition_period

By default, when you provide a simulation input, you won’t be able to set a variable value for a period that doesn’t
match its definition_period.

For instance, if the definition_period of salary is MONTH, and you input a value for salary for 2015, an
error will be raised.

It is however possible to define an automatic behaviour to cast yearly inputs into monthy values. To do this, add a
set_input class attribute to a variable.

• set_input = set_input_divide_by_period: the 12 months are set equal to the 12th of the input
value,

• set_input = set_input_dispatch_by_period: the 12 months are set equal to input value.

For instance, let’s slightly modify the code of salary:

class salary(Variable):
value_type = float
entity = Person
label = u"Salary for a month"
definition_period = MONTH
set_input = set_input_divide_by_period

def formula(person, period):
...

We can now provide an input for 2015 for salary: no error will be raised, and the value will be automatically split
between the 12 months of 2015.

Legislation evolutions

Openfisca handles the fact that the legislation changes over time.

3.5. Legislation evolutions 23

OpenFisca, Release

Parameter evolution

Many legislation parameters are regularly re-evaluated while the variables using them stay the same.

Example: the taxes parameter can change without altering the code of the flat_tax_on_salary
variable that uses that parameter.

In that case, add the new parameter values and their start dates in the appropriate parameter files.

How to update a parameter

Open the file where the parameter is described

taxes:
salary:
rate:

description: Rate for the flat tax on salaries
values:

2016-01-01:
value: 0.25
reference: https://www.legislation-source.com/2016

2015-01-01:
value: 0.20
reference: https://www.legislation-source.com/2015

Add a new value to this parameter

taxes:
salary:
rate:

description: Rate for the flat tax on salaries
values:

2017-01-01:
value: 0.3
reference: https://www.legislation-source.com/2017

2016-01-01:
value: 0.25
reference: https://www.legislation-source.com/2016

2015-01-01:
value: 0.2
reference: https://www.legislation-source.com/2015

After this change, in a formula:

• parameters('2016-04').taxes.salary.rate is 0.25

• parameters('2017-01').taxes.salary.rate is 0.3

• parameters('2022-01').taxes.salary.rate is 0.3

Read more about how to code parameters.

24 Chapter 3. From law to code

OpenFisca, Release

Formula evolution

Some fiscal or benefit mechanism significantly evolve over time and call for a change in the formula that computes
them. In this case, a simple parameter adjustement is not enough.

For instance, let’s assume that from the 1st of Jan. 2017, the flat_tax_on_salary is not applied anymore on the
first 1000 earned by a person.

We implement this rule by adding a new formula to our variable, and dating it:

class flat_tax_on_salary(Variable):
value_type = float
entity = Person
label = u"Individualized and monthly paid tax on salaries"
definition_period = MONTH

def formula_2017(person, period, parameters):
salary = person('salary', period)
salary_above_1000 = min_(salary - 1000, 0)
return salary_above_1000 * parameters(period).taxes.salary.rate

def formula(person, period, parameters):
salary = person('salary', period)

return salary * parameters(period).taxes.salary.rate

If the flat_tax_on_salary is calculated for a person before the 31st of Dec. 2016 (included), formula is used.
If it is called after the 1st of Jan 2017 (included), formula_2017 is used.

Formula naming rules:

• A formula name must always start with formula.

• To define a starting date for a formula, we add to its name a suffix made of an underscore followed by a date.

– For instance, formula_2017_01_01 is active from the 1st of Jan. 2017.

• When defining a date, the month is given before the day.

• When no month or day is specified, OpenFisca uses ‘01’ as default value.

– For instance, formula_2017 is equivalent to formula_2017_01_01.

• If no date is specified for a formula, OpenFisca will consider that this formula has been active since the dawn of
time (or more precisely, since 0001-01-01, as Python does not handle B.C. dates).

– For instance, formula is active on 2010.

• A formula is active until another formula, starting later, becomes active and replaces it (or until the variable end
date is reached, as we’ll see further down in the Variable end section).

– For instance, formula is active until 2016-12-31 (included). On the day after, 2017-01-01,
formula_2017 becomes active, and formula becomes inactive.

Formula introduction

In our previous example, we assumed that flat_tax_on_salary had always had a formula, since the dawn of
time. This is a reasonable hypothesis if we are only interested in running computations for recent years.

But most fiscal and benefit mechanisms have been introduced at some point. Let’s for instance assume that our
flat_tax_on_salary only appeared in our legislation on the 1st of June 2005.

3.5. Legislation evolutions 25

OpenFisca, Release

This is easily implemented by dating the two formulas:

class flat_tax_on_salary(Variable):
value_type = float
entity = Person
label = u"Individualized and monthly paid tax on salaries"
definition_period = MONTH

def formula_2017(person, period, parameters):
salary = person('salary', period)
salary_above_1000 = min_(salary - 1000, 0)
return salary_above_1000 * parameters(period).taxes.salary.rate

def formula_2005_06(person, period, parameters):
salary = person('salary', period)

return salary * parameters(period).taxes.salary.rate

Only a few characters changed in comparison with the last example: the suffix _2005_06 has been added to the
second formula name.

Note that if flat_tax_on_salary is calculated before 2005-05-31 (included), none of the two formulas is
used, as they are both inactive at this time. Instead, the variable default value is returned.

Variable end

As the legislation evolves, some fiscal or benefit mechanisms disapear.

Let’s for instance assume that a progressive_income_tax used to exist before the flat_tax_on_salary
was introduced. This progressive tax then disapeared on the 1st of June 2005.

This is implemented with an end attribute that define the last day a variable can be calculated:

class progressive_income_tax(Variable):
value_type = float
entity = Person
label = u"Former tax replaced by the flat tax on the 1st of June 2005"
definition_period = MONTH
end = '2005-05-31'

def formula(person, period, legislation):
Apply a marginal scale to the person's income
...

If progressive_income_tax is called before 2005-05-31(included), formula will be used.

However, if progressive_income_tax is calculated after 2005-06-01 (included), formula is not used, as
it is not active anymore at this time. Instead, the variable default value is returned.

Note that:

• The end day is inclusive: it is the last day a variable and its formulas are active (and not the first day it is not
active anymore).

• The end value is a string of format YYYY-MM-DD where YYYY, MM and DD are respectively a year, month and
day.

• When defining a date, the month is given before the day.

26 Chapter 3. From law to code

OpenFisca, Release

Entities

Every variable is defined for a type of entity: for instance persons or households.

However, I may for instance:

• in a formula defined for a person, want to know some property of their household.

• in a formula defined for a household, want to know some property of the household members.

Group entity composition

You can get the number of person with a given role in an entity with the nb_persons(role) method. If no role is
given, it will return the numbers of people in the entity.

def formula(household, period):
nb_persons = household.nb_persons()
nb_adults = household.nb_persons(Household.ADULT)
nb_children = household.nb_persons(Household.CHILD)

Note that roles are constants that can be accessed from their entity with the notation Entity.ROLE (in uppercase).

Check if a person has a given role

You can know whether a person has a certain role with the has_role(role) method:

def formula(person, period):
is_adult = person.has_role(Household.ADULT)
is_child = person.has_role(Household.CHILD)

Aggregation

For an entity, several methods allow you to aggregate the values of a quantity defined for its members.

entity.members('variable_name', period) allows you to calculate the value of a variable for all mem-
bers of an entity.

entity.sum(result) sums previously calculated results. Similar functions such as min, max, any, and all
work the same way.

For instance, let’s imagine a basic income paid to households with the following rules:

• Any household is entitled to 500C a month per adult, and 200C a month per children.

• The sum of salaries from all household members are deducted from the amount of the benefit.

class basic_income(Variable):
value_type = float
entity = Household
label = u"Basic income paid to households"
definition_period = MONTH

def formula(household, period):
nb_adults = household.nb_persons(Household.ADULT)
nb_children = household.nb_persons(Household.CHILD)
salaries = household.members('salary', period)

3.6. Entities 27

OpenFisca, Release

sum_salaries = household.sum(salaries)

result = nb_adults * 500 + nb_children * 200 - sum_salaries
result = max_(result, 0)

return result

Projection

person.entity('variable_name', period) allows you to get the value of variable_name for the
entity containing person.

Let’s for example consider that any college student whose family benefits from the basic income will also individually
be granted a scholarship of 100C per month:

class college_scholarship(Variable):
value_type = float
entity = Person
label = u"College Scholarship for basic income recipients."
definition_period = MONTH

def formula(person, period):
is_student = person('is_student', period)
has_household_basic_income = person.household('basic_income', period) > 0

return is_student * has_household_basic_income * 100

Similarly, entity.unique_role('variable_name', period) allows you to get the value of
variable_name for person who has the role unique_role in entity.

For instance, let’s assume Household has two unique roles, main_declarant and partner.

def formula(household, period):
household.main_declarant('salary', period) # main declarant's salary
household.partner('salary', period) # partner's salary

Reforms

A reform is a set of modifications to be applied to a tax and benefit system, usually to study the quantitative impact of
a possible change of the law.

See the reference documentation of the class Reform.

Writing a reform

Let’s for instance assume that we want to simulate the effect of a reform that changes the way the income_tax is
calculated.

We would write such a reform this way:

class income_tax(Variable):
entity = Household

28 Chapter 3. From law to code

https://openfisca.readthedocs.io/en/latest/reforms.html

OpenFisca, Release

label = u'Alternative formula to calculate the income tax, under experimentation'

def formula(household, period):
(...)

class income_tax_reform(Reform):
name = u'Reform on income tax'

def apply(self):
self.update_variable(income_tax)

A Reform must define an apply() method that describes all the modifications to be applied to the original tax and
benefit system to get the reformed one.

Note that the reference tax and benefit system won’t be modified. The apply() function will be applied
to a copy of the tax and benefit system.

All the methods used to build a tax and benefit system can also be used to reform it.

A reform that modifies a formula (such as our income_tax_reform example) is called a structural reform. It
redefines the way a variable is calculated.

Parametric reforms

A reform that apply changes to legislation parameters is called a parametric reform.

Note that a reform can be both structural and parametric, modifying and/or adding variables and pa-
rameters. In that case, it is common practice to call it a structural reform anyway, the structural part
outweighting the parametric one.

To modify the legislation parameters in the reform, you can call the method self.modify_parameters, which
takes a function as a parameter.

This function performs the modifications you want to apply to the legislation. It takes as a parameter a copy of the
reference tax and benefit system parameters: parameters. You can then modify and return parameters.

The reform is applied for a certain fixed period. To define the period for which you want to apply the reform, it’s
necessary to import periods from openfisca_core.

Update the value of a parameter

from openfisca_core import periods

def modify_parameters(parameters):
reform_period = periods.period("2015")
parameters.tax_on_salary.brackets[1].threshold.update(period = reform_period,

→˓value = 4000)
return parameters

class increase_minimum_wage(Reform):
name = u'Increase the minimum wage'

def apply(self):
self.modify_parameters(modifier_function = modify_parameters)

3.7. Reforms 29

https://openfisca.readthedocs.io/en/latest/tax-benefit-system.html

OpenFisca, Release

Add new parameters

You can load new parameters from a directory containing YAML files and add them to the reference parameters.

import os
from openfisca_core.parameters import load_parameter_file

dir_path = os.path.dirname(__file__)

def modify_parameters(parameters):
file_path = os.path.join(dir_path, 'plf2016.yaml')
reform_parameters_subtree = load_parameter_file(file_path, name='plf2016')
parameters.add_child('plf2016', reform_parameters_subtree)
return parameters

class some_reform(Reform):
def apply(self):

self.modify_parameters(modifier_function = modify_parameters)

Add new parameters dynamically

In some cases, loading new parameters from YAML files is not practical. For example, you may want to add parameters
from values computed dynamically. In such cases you can use the python objects defined in the parameters module :

from openfisca_core.parameters import ParameterNode

def modify_parameters(parameters):
reform_parameters_subtree = ParameterNode('new_tax', validated_yaml = {

'decote_seuil_celib': {
'values': {

"2015-01-01": {'value': f(a, b, c)},
"2016-01-01": {'value': None}
}

},
'decote_seuil_couple': {

'values': {
"2015-01-01": {'value': g(a, b, c)},
"2016-01-01": {'value': None}
}

},
})

parameters.add_child('new_tax', reform_parameters_subtree)

class some_reform(Reform):
def apply(self):

self.modify_parameters(modifier_function = modify_parameters)

Using a reform in Python

Reforms can be applied in Python with the following syntax:

from openfica_france import CountryTaxBenefitSystem

30 Chapter 3. From law to code

http://openfisca.readthedocs.io/en/latest/parameters.html

OpenFisca, Release

class income_tax_reform(Reform):
(...)

tax_benefit_system = CountryTaxBenefitSystem()

reformed_tax_benefit_system = income_tax_reform(tax_benefit_system)

Reforms can be chained:

from openfica_france import CountryTaxBenefitSystem

class income_tax_reform(Reform):
(...)

class increase_minimum_wage(Reform):
(...)

tax_benefit_system = CountryTaxBenefitSystem()

reformed_tax_benefit_system = income_tax_reform(
increase_minimum_wage(tax_benefit_system)
)

The Getting_Started Notebook contains an example of reform use.

Real examples

Examples can be found on the OpenFisca-France reforms directory.

Inferences

Here are the places in which inferences take place in OpenFisca:

• In period management, through calculate_output, which can automatically sum or divide values over
periods to match the requested period.

• In period management, through set_input, which can automatically sum or divide input values over periods
to match the computable period.

• In some formulas, through base_function, which can yield values that the original requested formula could
not compute on its own.

• In some formulas, through max_nb_cycles, which can block the computation toward the past and thus not
allow some values to be computed.

These inferences are not considered good practice, as they tend to make computations less consistent and predictable.
You should tend to avoid relying on them as much as possible.

Known issues

With base_function

Default values in input variables are the source of the issue: if a formula needs values that are undefined (e.g. because
they are in previous months from the calculation), it won’t crash nor log anything because the input variables return

3.8. Inferences 31

https://github.com/openfisca/tutorial/blob/master/notebooks/getting_started.ipynb
https://github.com/openfisca/openfisca-france/tree/master/openfisca_france/reforms

OpenFisca, Release

their default values. This inference behaviour seems to be fine for simulations based on a large population, but
production would expect a time-based inference, where the value is copied from its closest defined value rather than a
global default one.

The advised workaround is to always request the period when requesting parameters, and to never rely on the fragile
concept of a “simulation period”.

Writing YAML tests

The recommended way to write tests is to use YAML tests.

Each formula should be tested at least with one test, and better with specific boundary values (thresholds for example).

Terminology: Python dictionnary are called associative arrays in YAML.

Example

In irpp.yaml we see:

- name: "IRPP - Célibataire ayant des revenus salariaux (1AJ) de 20 000 C"
period: 2012
absolute_error_margin: 0.5
input_variables:
salaire_imposable: 20000

output_variables:
irpp: -1181

Common keys

• name (string)

• period (string with period syntax)

• keywords (list of strings, optional)

• description (string, optional, multiline)

• absolute_error_margin (number, optional)

• relative_error_margin (number, optional)

• input_variables (associative array, keys are variable names, values are numbers)

• output_variables (associative array, keys are variable names, values are numbers)

• other any key defined in the model

Syntax

Testing formulas by giving input variables

This is the simplest way to test formulas when you only need to give input values for only one individual.

• First, name your test. Start a test with -, which is the YAML list separator, followed by a space, the field name,
and the test name as a string.

32 Chapter 3. From law to code

https://github.com/openfisca/openfisca-france/blob/29.3.7/tests/formulas/irpp.yaml

OpenFisca, Release

- name: "IRPP - Célibataire ayant des revenus salariaux (1AJ) de 20 000 C"

• Then add the other relevant keys to your test. Usually, one defines the keys period, keywords,
description, absolute_error_margin (or relative_error_margin) and their associated cho-
sen values as follows:

- name: "IRPP - Célibataire ayant des revenus salariaux (1AJ) de 20 000 C"
period: 2012
absolute_error_margin: 0.5

• Create nested dictionnaries within the keys input_variables and output_variables, which keys are
variable names and values are numbers, respectively input and expected values. For instance:

- name: "IRPP - Célibataire ayant des revenus salariaux (1AJ) de 20 000 C"
period: 2012
absolute_error_margin: 0.5
input_variables:
salaire_imposable: 20000
salaire_brut: 20000

output_variables:
irpp: -1181

Testing formulas giving a test case

This is the simplest way to test formulas when you need to give input values for many individuals which are dispatched
into entities.

See the last test of cotisations_sociales_simulateur_IPP.yaml

In this case, there is another convention:

• do not include the field input_variables but instead define new keys corresponding to the entities:

- name: "IRPP - Famille ayant des revenus salariaux de 20 000 C"
period: 2012
absolute_error_margin: 0.5
familles:
menages:
foyers_fiscaux:

• define the individuals with their id and their variables:

individus:
- id: "parent1"
date_naissance: 1972-01-01
depcom_entreprise: "69381"
primes_fonction_publique: 500
- id: "parent2"
date_naissance: 1972-01-01
depcom_entreprise: "69381"
primes_fonction_publique: 500
traitement_indiciaire_brut: 2000
- id: "enfant1"
date_naissance: 2000-01-01
- id: "enfant2"
date_naissance: 2009-01-01

3.9. Writing YAML tests 33

https://github.com/openfisca/openfisca-france/blob/29.3.7/tests/cotisations_sociales_simulateur_IPP.yaml#L244-L303

OpenFisca, Release

• specify the relations between individuals and their entity:

familles:
parents: ["parent1", "parent2"]
enfants: ["enfant1", "enfant2"]

menages:
personne_de_reference: "parent1"
conjoint: "parent2"
enfants: ["enfant1", "enfant2"]

foyers_fiscaux:
declarants: ["parent1", "parent2"]
personnes_a_charge: ["enfant1", "enfant2"]

• finally, define a dictionnary of the expected values of the output variables. Each output variable takes a list of
length equal to the number of individuals defined in the test. E.g, for a family of four individuals with two
working parents and two unemployed children, the output variable salaire_super_brut is defined as follows:

output_variables:
salaire_super_brut: [3500, 2500, 0, 0]

Testing formulas using variables defined for multiple periods

Input or output variables can be defined for multiple periods by giving an associated array which keys are a period
expression and values are the value for that period.

Values can be arithmetic expressions too.

individus:
salaire_de_base:

2013-01: 35 * 52 / 12 * 9
2013-02: 35 * 52 / 12 * 9
2013-03: 35 * 52 / 12 * 9

Running a test

To run YAML tests, use the command line tool openfisca-run-test, documented here:

openfisca-run-test path/to/file.yaml

You can also run tests programatically using the test_runner module.

Next steps

Other kinds of tests exist, see contribute/tests.

Parameters

Legislation parameters can be found in the parameters directory of your country package.

The parameters are organized with in a tree structure.

Example: tax_on_salary.public_sector.rate can be found in parameters/
tax_on_salary/public_sector/rate.yml.

34 Chapter 3. From law to code

https://openfisca.readthedocs.io/en/latest/openfisca-run-test.html
https://openfisca.readthedocs.io/en/latest/test_runner.html
https://en.wikipedia.org/wiki/Tree_structure

OpenFisca, Release

Example of a parameters directory:

• parameters

– tax_on_salary

* tax_scale.yaml

* public_sector

· rate.yaml

– universal_income

* minimum_age.yaml

* amount.yaml

In this file structure:

• tax_on_salaries, tax_on_salary.public_sector, universal_income are nodes;

• tax_on_salaries.tax_scale, tax_on_salary.public_sector.
rate,universal_income.minimum_age,universal_income.amount are parameters (or
scales).

How to write a new parameter

if you wish to update a parameter, read our legislation evolution page.

1. Find where the parameter fits

A parameter is located inside a node, that has the same name as the directory it is contained in.

Example: tax_on_salary.public_sector is the node that contains the tax_on_salary.
public_sector.rateparameter.

1. Create a new parameter YAML file

A legislative parameter is defined by a YAML file of the same name. Possible attributes are:

• description (optional) Description;

• reference (optional) Legislative reference;

• unit (optional) Can be:

– year : The values are years;

– currency: The values are in the unit of currency of the country;

– /1: The values are percentages, with 1.0=100%;

• values: Value of the parameter for several dates.

Sample file parameters/universal_income/amount.yaml

description: Universal income
unit: currency
values:

1993-01-01:
value: 1000

2010-01-01:
value: 1500
reference: http://law.reference.org/universal_income

3.10. Parameters 35

OpenFisca, Release

2020-01-01:
expected: 1700

In this example, the parameter universal_income.amount is:

• undefined before 1993;

• equal to 1000 from 1993 to 2010;

• equal to 1500 in 2010

• expected to be raised to 1700 “local currency” in 2020.

The ordering of the dates has no effect. It is recommended to add legislative references for every value?

1. Use the parameter in a variable

See this example of a variable using legislation parameters.

Naming conventions and reserved words

Names should begin with a lowercase letter and should contain only lowercase letters and the underscore (_).

The following keywords are reserved and should not be used as names : description, reference, values,
brackets.

YAML parameter files should not be name index.yaml.

Advanced uses

Use a YAML files to define nodes

A node can be defined with a YAML file instead of a directory. In such a case, the name of the file defines the name
of the node. Such a file can define children nodes (which can define grandchildren...).

Sample parameters/tax_on_salary.yaml:

description: Tax on salaries
reference: http://fiscaladministration.government/tax_on_salaries.html
tax_scale:

bracket:
...

public_sector:
description: Tax on salaries for public sector
rate:
values:
...

Create Scales

Scales are constituted of brackets. Brackets are defined by amounts, bases, rates, average rates and thresholds.

Sample parameters/tax_on_salary/tax_scale.yaml:

36 Chapter 3. From law to code

OpenFisca, Release

description: Scale for tax on salaries
brackets:
- rate:

1950-01-01:
value: 0.0

2010-01-01:
value: 0.02

threshold:
1950-01-01:

value: 0.0
- rate:

1950-01-01:
value: 0.2

threshold:
1950-01-01:

value: 2000

Example: the french tax scale on income

Import parameters from IPP tables

This section applies only to OpenFisca-France.

The IPP is a French centre in economics which produces tax and benefit tables in the XLSX format, with parameters
history.

The OpenFisca team works on importing those data into the YAML parameter files of OpenFisca-France.

See this README for more information.

Computing a parameter that depends on a variable (fancy indexing)

Sometimes, the value of a parameter depends on a variable (e.g. a housing benefit that depends on the zone the house
is built on).

To be more specific, let’s assume that:

• Households who rent their accomodation can get a housing_benefit

• The amount of this benefit depends on which zone the household lives in. The zone can take only three values:
zone_1, zone_2 or zone_3.

• The amount also depends on the composition of the household.

The parameters of this benefit can be defined in a housing_benefit.yaml file:

zone_1:
single:
description: "Amount of housing benefit for a single person, in zone 1"
values:

2015-01-01:
value: 150

couple:
description: "Amount of housing benefit for a couple, in zone 1"
values:

2015-01-01:
value: 250

per_child:

3.10. Parameters 37

https://fr.openfisca.org/legislation/impot_revenu.bareme
http://www.ipp.eu/
https://github.com/openfisca/openfisca-france/tree/master/openfisca_france/scripts/parameters/baremes_ipp

OpenFisca, Release

description: "Amount of housing benefit per child, in zone 1"
values:

2015-01-01:
value: 80

zone_2:
single:
description: "Amount of housing benefit for a single person, in zone 2"
values:

2015-01-01:
value: 120

couple:
description: "Amount of housing benefit for a couple, in zone 2"
values:

2015-01-01:
value: 220

per_child:
description: "Amount of housing benefit per child, in zone 2"
values:

2015-01-01:
value: 60

zone_3:
single:
description: "Amount of housing benefit for a single person, in zone 3"
values:

2015-01-01:
value: 100

couple:
description: "Amount of housing benefit for a couple, in zone 3"
values:

2015-01-01:
value: 180

per_child:
description: "Amount of housing benefit per child, in zone 3"
values:

2015-01-01:
value: 50

Then the formula calculting housing_benefit can be implemented with:

def formula(household, period, parameters):
is_couple = household('couple', period)
nb_children = household('nb_children', period)
zone = household('zone', period)

P = parameters(period).housing_benefit[zone]

return where(is_couple, P.couple, P.single) + nb_children * P.per_children

parameters(period).housing_benefit[zone] return the parameters for the zone corresponding to the
household.

If there are many households in your simulation, this parameter will be vectorial : it may have a different value for
each household of your entity.

To be able to use this notation, all the children node of the parameter node housing_benefit must
be homogenous. In the previous example, housing_benefit.zone_1, housing_benefit.zone_2,
housing_benefit.zone_3 are homogenous, as they have the same subnodes.

However, let’s imagine that housing_benefit.yaml had another subnode named coeff_furnished, which

38 Chapter 3. From law to code

OpenFisca, Release

described a coefficient to apply to the benefit is the accomodation is rented furnished:

housing_benefit.yaml content:

coeff_furnished:
description: "Coefficient to apply if the accomodation is rented furnished"
values:

2015-01-01:
value: 0.75

zone_1:
single:
description: "Amount of housing benefit for a single person, in zone 1"
values:

2015-01-01:
value: 150

(...)

In this case, parameters(period).housing_benefit[zone] would raise en error, whatever zone
contains, as the homogeneity condition is not respected: housing_benefit.zone_1 is a node, while
housing_benefit.coeff_furnished is a parameter.

To solve this issue, the good practice would be to create an intermediate node amount_by_zone:

housing_benefit.yaml content:

coeff_furnished:
description: "Coefficient to apply if the accomodation is rented furnished"
values:

2015-01-01:
value: 0.75

amount_by_zone:
zone_1:
single:

description: "Amount of housing benefit for a single person, in zone 1"
values:

2015-01-01:
value: 150

(...)

And then to get parameters(period).housing_benefit.amount_by_zone[zone]

How to navigate the parameters in Python

Set-up your python file by importing a country package and building the tax and benefits system

Example :

import openfisca_country_template
tax_benefit_system = openfisca_country_template.CountryTaxBenefitSystem()

Access a parameter for all periods

To access a point in the parameter tree, call tax_benefit_system.parameters

Example : Access the benefit branch of the openfisca-country-template legislation

3.10. Parameters 39

OpenFisca, Release

tax_benefit_system.parameters.benefits

Returns:

basic_income:
2015-12-01: 600.0

housing_allowance:
2016-12-01: None
2010-01-01: 0.25

Access basic_income, a parameter of the benefits branch.

tax_benefit_system.parameters.benefits.basic_income

Returns:

2015-12-01: 600.0

Access a parameter for a specific period

Request a branch of a parameter at a given date with the parameters.benefits('2015-07-01') notation.

How to update parameters in python

To add an entry to an existing parameter, use update:

Example:

tax_benefit_system.parameters.benefits.basic_bro.update("2017-01", value =
→˓2000)
tax_benefit_system.parameters.benefits.basic_bro

Returns:

2017-01-01: 2000
2015-12-01: 600.0

Bootstraping a new country package

If you want to use OpenFisca to run simulations about your own country’s legislation, our country package template
will provide you all the instructions and boilerplate code you need to quickly get something working.

If you want to see more complex and complete examples of legislation coded in OpenFisca, you can check the French,
Tunisian and Senegalese country packages.

Now let’s think practical. The following tutorial and documentation offer you an overview of OpenFisca principles.

If you want to try OpenFisca quickly by yourselves in a Jupyter Notebook, please read the tutorials here.

40 Chapter 3. From law to code

https://github.com/openfisca/country-template/
https://github.com/openfisca/openfisca-france
https://github.com/openfisca/openfisca-tunisia
https://github.com/openfisca/senegal
https://jupyter.org/
http://mybinder.org/repo/openfisca/tutorial

OpenFisca, Release

Tutorial

• Coding a formula: basic example

• Introducing an input variable

• Vectorial computing

• Periods

• Legislation evolutions

• Entities

Additional documentation

• Writing tests

• Coding Parameters

• Coding Reforms

• Bootstrapping a new country package

• Inferences used in OpenFisca

3.12. Tutorial 41

OpenFisca, Release

42 Chapter 3. From law to code

CHAPTER 4

OpenFisca Web API

Endpoints

Each OpenFisca Country Package web API comes with a set of endpoints including an OpenAPI specification on the
/spec route. You can check out the demonstration swagger documentation to see how the endpoints work.

The Openfisca Web API can be used to:

• access information about the parameters (e.g. /parameters), the variables (e.g. /variables), and entities
(e.g. /entities) of the Country Package,

• run simulations (e.g. /calculate) on a specific situation. To describe a situation, learn more about the Web
API inputs and outputs.

Using the /calculate endpoint

All the examples provided here are from the country package template.

In order to run a computation on the Web API, you will need to send information to the API concerning:

• The situation, meaning describe the entities (e.g. individuals, households) that you want to base your calcula-
tions on.

• The variable you need to compute.

Describing the situation

Describing entities

The most important rule in describing a situation in OpenFisca is:

Every person has to belong to one of each group entity (e.g. household). Every person in a group entity needs a role
(e.g. parent)

43

http://demo.openfisca.org/legislation/swagger
https://github.com/openfisca/country-template
http://openfisca.org/doc/person,_entities,_role.html

OpenFisca, Release

For example, if you wish to run a calculation on 2 households:

• household_1 is composed of two adults;

• household_2 is composed of one adult and one child.

{
"persons": {
"Ricarda": {},
"Bob": {},
"Bill": {},
"Janet": {}
},

"households": {
"household_1": {

"parents": [
"Ricarda", "Bob"

]
},
"household_2": {

"parents": [
"Bill"

],
"children":[

"Janet"
]

}
}

}

Adding information to entities

To run a precise calculation, you can provide information on each person and group entity.

These are the input variables of your simulation.

To provide an input variable, insert the value in the json, for the corresponding time period (e.g. ‘2015-06’) and entity
(e.g. ‘person’, ‘household’).

The time period must respect the definition period of the variable, and the entity must be the one the variable is defined
for.

For example, if Ricarda has a salary (defined monthly for a Person) of 3500/month until september 2016,
and 4000/month after that and if household_2 were tenant and became homeowners in march 2016 (hous-
ing_occupancy_status is defined monthly for a household) of the 57 sqm apartment they live in, you would
write:

{
"persons": {
"Ricarda": {

"salary": {
"2016-01": 3500,
"2016-02": 3500,
"2016-03": 3500,
"2016-04": 3500,
"2016-05": 3500,
"2016-06": 3500,
"2016-07": 3500,
"2016-08": 3500,

44 Chapter 4. OpenFisca Web API

OpenFisca, Release

"2016-09": 4000,
"2016-10": 4000,
"2016-11": 4000,
"2016-12": 4000

}
},
"Bob": {},
"Bill": {},
"Janet": {}

},
"households": {
"household_1": {

"parents": [
"Ricarda", "Bob"

]
},
"household_2": {

"parents": [
"Bill"

],
"children":[

"Janet"
],
"housing_occupancy_status": {

"2016-01": "Tenant",
"2016-02": "Tenant",
"2016-03": "Owner",
"2016-04": "Owner",
"2016-05": "Owner",
"2016-06": "Owner",
"2016-07": "Owner",
"2016-08": "Owner",
"2016-09": "Owner",
"2016-10": "Owner",
"2016-11": "Owner",
"2016-12": "Owner"

},
"accommodation_size": {

"2016-01": 57,
"2016-02": 57,
"2016-03": 57,
"2016-04": 57,
"2016-05": 57,
"2016-06": 57,
"2016-07": 57,
"2016-08": 57,
"2016-09": 57,
"2016-10": 57,
"2016-11": 57,
"2016-12": 57

}
}

}
}

Note that due to the default value system in OpenFisca, the variables that have not been defined explicitly are
either calculated or take on their default value.

4.2. Using the /calculate endpoint 45

OpenFisca, Release

Computing a variable

Once you have described the situation, you can compute all variables in the Country Package.

To indicate you want a variable computed, insert the variable in the corresponding entity and indicate the time period
followed by the term null.

for example, to compute Ricarda’s june income tax (defined monthly for a person) and household_2’s
housing tax (defined yearly for a household), you would write:

{
"persons": {
"Ricarda": {

"salary": {
"2016-01": 3500,
"2016-02": 3500,
"2016-03": 3500,
"2016-04": 3500,
"2016-05": 3500,
"2016-06": 3500,
"2016-07": 3500,
"2016-08": 3500,
"2016-09": 4000,
"2016-10": 4000,
"2016-11": 4000,
"2016-12": 4000

},
"income_tax": {
"2016-06": null

}
},
"Bob": {},
"Bill": {},
"Janet": {}

},
"households": {
"household_1": {

"parents": [
"Ricarda", "Bob"

]
},
"household_2": {

"parents": [
"Bill"

],
"children":[

"Janet"
],
"housing_occupancy_status": {

"2016-01": "Tenant",
"2016-02": "Tenant",
"2016-03": "Owner",
"2016-04": "Owner",
"2016-05": "Owner",
"2016-06": "Owner",
"2016-07": "Owner",
"2016-08": "Owner",
"2016-09": "Owner",
"2016-10": "Owner",

46 Chapter 4. OpenFisca Web API

OpenFisca, Release

"2016-11": "Owner",
"2016-12": "Owner"

},
"accomodation_size": {

"2016-01": 57,
"2016-02": 57,
"2016-03": 57,
"2016-04": 57,
"2016-05": 57,
"2016-06": 57,
"2016-07": 57,
"2016-08": 57,
"2016-09": 57,
"2016-10": 57,
"2016-11": 57,
"2016-12": 57

},
"housing_tax": {

"2016": null
}

}
}

}

Understanding the result

The API will return an identical JSON file where all the null (the variable that you asked OpenFisca to compute, see
above for details) have been replace by the computed value.

{
"households": {
"household_1": {

"parents": [
"Ricarda",
"Bob"

]
},
"household_2": {

"accomodation_size": {
"2016-01": 57,
"2016-02": 57,
"2016-03": 57,
"2016-04": 57,
"2016-05": 57,
"2016-06": 57,
"2016-07": 57,
"2016-08": 57,
"2016-09": 57,
"2016-10": 57,
"2016-11": 57,
"2016-12": 57

},
"children": [

"Janet"
],
"housing_occupancy_status": {

4.2. Using the /calculate endpoint 47

OpenFisca, Release

"2016-01": "Tenant",
"2016-02": "Tenant",
"2016-03": "Owner",
"2016-04": "Owner",
"2016-05": "Owner",
"2016-06": "Owner",
"2016-07": "Owner",
"2016-08": "Owner",
"2016-09": "Owner",
"2016-10": "Owner",
"2016-11": "Owner",
"2016-12": "Owner"

},
"housing_tax": {

"2016": 570.0
},
"parents": [
"Bill"

]
}

},
"persons": {
"Bill": {},
"Bob": {},
"Janet": {},
"Ricarda": {
"income_tax": {
"2016-06": 525.0

},
"salary": {

"2016-01": 3500,
"2016-02": 3500,
"2016-03": 3500,
"2016-04": 3500,
"2016-05": 3500,
"2016-06": 3500,
"2016-07": 3500,
"2016-08": 3500,
"2016-09": 4000,
"2016-10": 4000,
"2016-11": 4000,
"2016-12": 4000

}
}

}
}

Note that elements might appear in a different order in the response. However the structure of the file
stays the same.

OpenAPI specification configuration

The OpenFisca Web API exposes a /spec route that documents how to use the API, using the OpenAPI standard.

Most the the /spec content is automatically built for you. However, some minimal configuration can make the
provided examples more complete and relevant, and improve the Swagger interactive documentation packaged in the

48 Chapter 4. OpenFisca Web API

http://demo.openfisca.org/legislation/swagger
http://demo.openfisca.org/legislation/swagger

OpenFisca, Release

Legislation Explorer.

This configuration is done in the initialisation of your TaxBenefitSystem. For example, in the country package
template, you can see:

We define which variable, parameter and simulation example will be used in the
→˓OpenAPI specification
self.open_api_config = {
"variable_example": "disposable_income",
"parameter_example": "taxes.income_tax_rate",
"simulation_example": couple,
}

This defines:

• variable_example: A variable of your model that you want to appear in the specification. Usually a well
known variable (e.g. salary).

• parameter_example: A parameter of your model that you want to appear in the specification. Usually a
well known variable (e.g. minimum wage).

• simulation_example: A Python dict representing a JSON that could be sent to the Web API. It should
include some input values, and some values set to null/None so that they are calculated.

Note that if no OpenAPI configuration is provided, an arbitrary variable and an arbitrary parameter will be used, and
no simulation example will be provided as an example.

OpenFisca provides a web API package compatible with all country packages. Using a web interface, App Developers
can access information and computations without installing anything locally.

Public France API

The latest version of the France web api is fr.openfisca.org/api/v21. Its endpoints are documented in
fr.openfisca.org/legislation/swagger. The stability of this API is guaranteed over time.

Use Cases

The following services use the OpenFisca Web API:

• fr.openfisca.org/legislation, giving you information on available OpenFisca variables.

• Mes Aides, the French social benefits simulator.

• PA-comp, a divorce fiscal impact simulator.

Conditions

Please remember that OpenFisca is free software, licensed under an Affero GPL license. That means you have to
provide access to the source code of the API you make available, including any changes you might have made on the
original code. You also have to provide a link to the OpenFisca source code, and state its license, in a place that is
easily discoverable by users of your software.

You could for example add one the following lines to a “credits” page:

4.4. Public France API 49

http://demo.openfisca.org/legislation/swagger
http://demo.openfisca.org/legislation/swagger
https://github.com/openfisca/country-template/blob/3.5.0/openfisca_country_template/__init__.py#L28-L33
https://github.com/openfisca/country-template/blob/3.5.0/openfisca_country_template/__init__.py#L28-L33
https://fr.openfisca.org/api/v21
https://fr.openfisca.org/legislation/swagger
https://fr.openfisca.org/legislation
https://mes-aides.gouv.fr
https://pa-comp.firebaseapp.com
https://choosealicense.com/licenses/agpl-3.0/

OpenFisca, Release

Computations done by OpenFisca, the <a href=
→˓"https://choosealicense.com/licenses/agpl-3.0/" title="AGPL-3.0">free and open-
→˓source social and fiscal computation engine. Source code available at <a href=
→˓"https://github.com/openfisca">github.com/openfisca.

Calculs effectués par OpenFisca, le moteur <a
→˓href="https://choosealicense.com/licenses/agpl-3.0/" title="AGPL-3.0">libre et
→˓ouvert du système social et fiscal. Code source disponible sur <a href="https://
→˓github.com/openfisca">github.com/openfisca.

Hosting an API instance

Let App Developers access your country package information and computations by serving the web API that comes
bundled with the OpenFisca-Core module. See the technical documentation for serving instructions.

Track your API

If you want to track how your API is being used, you can install the OpenFisca Tracker.

50 Chapter 4. OpenFisca Web API

https://github.com/openfisca/openfisca-core#serving-the-api
https://github.com/openfisca/openfisca-core#tracker

CHAPTER 5

Troubleshooting

When a computation raises an error or returns a wrong or strange result, you can use one of these techniques to find
out the reason.

Enable the debug log

The debug log is printed by OpenFisca internals. It displays for each computed formula its inputs, its period and its
result. The computed variable appears last.

It uses the logging module of Python and is disabled by default.

Here is how to enable it:

from openfisca_france import FranceTaxBenefitSystem
tax_benefit_system = FranceTaxBenefitSystem()
scenario = tax_benefit_system.new_scenario()
scenario.init_single_entity(

period = 2015,
parent1 = dict(

salaire_de_base = 40000,
),

)
simulation = scenario.new_simulation(debug=True)
irpp = simulation.calculate('irpp', 2015)

It displays (not shown here entirely):

INFO:openfisca_core.formulas:<=> enfant_a_charge@individus<2015>(age@individus<2015>
→˓[45], handicap@individus<2015>[False], quifoy@individus<2015>[0]) --> <2015>[False]
INFO:openfisca_core.formulas:<=> enfant_majeur_celibataire_sans_enfant@individus<2015>
→˓(age@individus<2015>[45], handicap@individus<2015>[False], quifoy@individus<2015>
→˓[0]) --> <2015>[False]
INFO:openfisca_core.formulas:<=> nbptr@foyers_fiscaux<2015>(nb_pac@foyers_fiscaux
→˓<2015>[0.0], maries_ou_pacses@foyers_fiscaux<2015>[False], celibataire_ou_
→˓divorce@foyers_fiscaux<2015>[True], veuf@foyers_fiscaux<2015>[False], jeune_
→˓veuf@foyers_fiscaux<2015>[False], nbF@foyers_fiscaux<2015>[0.0], nbG@foyers_fiscaux
→˓<2015>[0.0], nbH@foyers_fiscaux<2015>[0.0], nbI@foyers_fiscaux<2015>[0.0],
→˓nbR@foyers_fiscaux<2015>[0], nbJ@foyers_fiscaux<2015>[0], caseP@foyers_fiscaux<2015>
→˓[False], caseW@foyers_fiscaux<2015>[False], caseG@foyers_fiscaux<2015>[False],
→˓caseE@foyers_fiscaux<2015>[False], caseK@foyers_fiscaux<2015>[False], caseN@foyers_
→˓fiscaux<2015>[False], caseF@foyers_fiscaux<2015>[False], caseS@foyers_fiscaux<2015>
→˓[False], caseL@foyers_fiscaux<2015>[False], caseT@foyers_fiscaux<2015>[False]) -->
→˓<2015>[1.0]

51

OpenFisca, Release

INFO:openfisca_core.formulas:<=> indemnite_residence@individus<2015-01>(traitement_
→˓indiciaire_brut@individus<2015-01>[0.0], salaire_de_base@individus<2015-01>[3333.
→˓33], categorie_salarie@individus<2015-01>[0], zone_apl_individu@individus<2015-01>
→˓[2]) --> <2015-01>[0.0]
[...]
INFO:openfisca_core.formulas:<=> cotsyn@foyers_fiscaux<2015>(f7ac@individus<2015>[0],
→˓salaire_imposable@individus<2015>[32353.7], chomage_imposable@individus<2015>[0.0],
→˓retraite_imposable@individus<2015>[0.0]) --> <2015>[0.0]
INFO:openfisca_core.formulas:<=> rfr@foyers_fiscaux<2015>(rni@foyers_fiscaux<2015>
→˓[29118.7], f3va@individus<2015>[0], f3vi@individus<2015>[0], rfr_cd@foyers_fiscaux
→˓<2015>[0.0], rfr_rvcm@foyers_fiscaux<2015>[0.0], rpns_exon@individus<2015>[0.0],
→˓rpns_pvce@individus<2015>[0.0], rev_cap_lib@foyers_fiscaux<2015>[0.0], f3vz@foyers_
→˓fiscaux<2015>[0], microentreprise@foyers_fiscaux<2015>[0.0]) --> <2015>[29118.7]
INFO:openfisca_core.formulas:<=> cehr@foyers_fiscaux<2015>(rfr@foyers_fiscaux<2015>
→˓[29118.7], nb_adult@foyers_fiscaux<2015>[1.0]) --> <2015>[0.0]
INFO:openfisca_core.formulas:<=> irpp@foyers_fiscaux<2015>(iai@foyers_fiscaux<2015>
→˓[3091.05], credits_impot@foyers_fiscaux<2015>[0.0], cehr@foyers_fiscaux<2015>[0.0])
→˓--> <2015>[-3091.05]

Note: if you work in a Jupyter notebook, you can activate logging by inserting this first cell in your notebook:

import logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

52 Chapter 5. Troubleshooting

CHAPTER 6

Recipes for OpenFisca

Use OpenFisca on the web

If you want to use OpenFisca for running a simulation or evaluating the impact of a reform, without installing anything
in your computer, these online services allow you to run OpenFisca directly on your browser, no installation required:
repl.it, python anywhere and jupyterlab.

Let’s see how to use OpenFisca on one of those services: repl.it

Instructions

1. Go to repl.it and select Python:

2. Write the OpenFisca code you wish to run. The default entry point is main.py python file. Example of
main.py content using openfisca-country-template:

from openfisca_country_template import CountryTaxBenefitSystem

tax_benefit_system = CountryTaxBenefitSystem()
parameters = tax_benefit_system.parameters

print parameters

You can also import files (e.g. JSON files describing input situations) by clicking on the import
or drop button.

3. Click the run button to execute your code .

Your code dependencies are automatically analyzed and imported.

4. You’re all set. Check your code results on the right sided python interpreter.

53

https://repl.it
https://www.pythonanywhere.com
https://jupyterlab.readthedocs.io/en/stable/
https://repl.it
https://repl.it

OpenFisca, Release

Example: evaluating a reform with OpenFisca France and repl.it

To see OpenFisca in action in your favourite browser, check out this example of reform to the French tax-benefit
system in repl.it (in French)!

How to use OpenFisca with Docker

When you want to use OpenFisca, either for running simulations or editing a country package, you need to setup a
specific environement. If you don’t want the OpenFisca environment to interfere with your pre-existing setup, or if
you don’t have one, you can use a container such as Docker that will set everything up for you.

Run OpenFisca on Docker

1. Install Docker

2. Create a docker file in the directory you wish to work on

FROM python:2-stretch
RUN pip install openfisca_country_template
WORKDIR /app

1. Build the container

docker build --rm -t openfisca-country-template .

1. Run the container

docker run -it openfisca-country-template bash

Interface local files with OpenFisca on Docker

If you need to run local files with your Docker image, you can interface (i.e. mount) a local directory with a directory
in your docker interface. E.g. You need to update a country package such as openfisca-country-template

1. Create a Dockerfile with openfisca-core in your project directory

The Dokerfile:

FROM python:2-stretch
RUN pip install OpenFisca-core
WORKDIR /country-template

1. Clone the country-template in the directory

The directory:

project
| README.md
| Dockerfile
|
--country-template

1. Build the container

54 Chapter 6. Recipes for OpenFisca

https://repl.it/@openfisca/framework-openfisca-france
https://repl.it/@openfisca/framework-openfisca-france
https://docs.docker.com/install/
https://github.com/openfisca/country-template

OpenFisca, Release

docker build --rm -t openfisca-core .

1. Run the container

docker run -it -v /absolute/path/to/country-template/:/country-template openfisca-
→˓core bash

1. Use country-template in the Docker container Use the country-template in the docker container,
any changes to the country-template local files will affect the country-template files in the con-
tainer.

Installing OpenFisca in an offline environment

If you need to install OpenFisca on a server with no Internet access, here is how to do it.

The big picture: download Python packages on a machine with Internet access, copy them to the server and install
them in a virtualenv.

We assume that it is possible to copy files to the server, for example via an USB key. Or perhaps the server filters only
outgoing connections, but accepts incoming connections allowing to copy the files.

On the machine with Internet access

We are going to create a first virtualenv in which we’ll use pip to download the .whl files in a specific directory.

Here we use pew to simplify virtualenv management.

pip install pew
pew new openfisca-packages --python=python3.7

Upgrade pip itself
pip install --upgrade pip
pip --version
Should print at least 9.0 at the time we write this doc.

mkdir ~/openfisca-packages
cd ~/openfisca-packages
pip download OpenFisca-France
You should see the downloaded files in the current directory.

Now copy these files on the server (say in the ~/openfisca-packages directory), either via an USB key, or with
scp, or any other way.

Example with scp:

scp -r ~/openfisca-packages user@server:

On the server

Starting from here we assume you copied the packages on the server, say in ~/openfisca-packages.

The following commands show how to install Python packages without any Internet access. If you already have a
virtualenv, activate it. Otherwise create a new one following the same instructions as above (for example with pew
new).

6.3. Installing OpenFisca in an offline environment 55

https://virtualenv.pypa.io/en/stable/
https://github.com/berdario/pew

OpenFisca, Release

pip install ~/openfisca-packages/*
Processing ./isodate-0.5.4.tar.gz
[...]
Installing collected packages: pytz, Babel, Biryani, numpy, PyYAML, OpenFisca-

→˓Core, requests, OpenFisca-France, isodate
Successfully installed Babel-2.3.4 Biryani-0.10.4 OpenFisca-Core-7.0.0 OpenFisca-

→˓France-15.1.0 PyYAML-3.12 isodate-0.5.4 numpy-1.12.0 pytz-2016.10 requests-2.13.0

pip list | grep OpenFisca-France
OpenFisca-France 15.1.0

Run the basic tests which confirm that OpenFisca-France is correctly installed:

python -m openfisca_france.tests.test_basics
OpenFisca-France basic test was executed successfully.

Work on OpenFisca on a Windows without being administrator

Warning: running OpenFisca on a machine with administrator privileges would make your life much easier. Using a
MacOS or a Linux would be even better.

If you do not have a choice other than using a restricted Windows, this guide sums up the “recipe” to install OpenFisca
in such an environment.

1. Install git

Git is a tool that will help you version your work. It also comes with a shell terminal that allows you to type commands
in a more standard way than the Windows command line tool.

• Download git from https://gitforwindows.org/.

• Install it. While installing, keep the default options.

2. Install python

Python is the programing language used in OpenFisca. It can be installed without administrators rights through a
software named Miniconda.

• Download miniconda from https://conda.io/miniconda. Make sure to choose the Python 3.7 version for Win-
dows. If you don’t know if your system is 32-bit or 64-bit, pick 32-bit.

• Install it. At some point, the installer will ask you for a “Destination Folder”. You can keep the default or choose
another one, but in all case copy paste the path to this folder somewhere. It will be useful later. For instance,
this path may look like C:\Users\my-name\AppData\Local\Miniconda2.

• Run the program “Git Bash” from the “Start” menu (“Démarrer”). This should open a command line. Copy and
paste the following lines in the console, after adapting the first line using the path you noted in the last step:

echo 'MINICONDA_PATH="C:\Users\form\AppData\Local\Miniconda2"' >> .bashrc
echo 'function convert { echo /$1 | sed '\''s/\\/\//g'\'' | sed '\''s/://'\'' ; }' >>
→˓ .bashrc
echo 'function add { export PATH=$(convert $1):$PATH ;}' >> .bashrc
echo 'add $MINICONDA_PATH' >> .bashrc
echo 'add "$MINICONDA_PATH/Scripts"' >> .bashrc

56 Chapter 6. Recipes for OpenFisca

https://gitforwindows.org/
https://conda.io/miniconda

OpenFisca, Release

source .bashrc
conda create -n openfisca python=3.7 --offline --yes
echo 'source activate openfisca' >> .bashrc
source activate openfisca

To check that everything worked correctly, type in Git Bash:

pip --version

A version number should be printed, and no error message should appear. Congrats, you just set up a Python working
environment!

3. Install OpenFisca

• Download the OpenFisca-France installation files

• Extract the content of this archive in a directory.

• Go to that directory, then to the windows subdirectory. If you installed Python in 32 bits, right-click on
32-bits. If you installed Python in 64 bits, right-click on the 64-bits subdirectory. Choose “Git Bash
Here”

• Run the command pip install *

To check that everything worked correctly, type in Git Bash:

python -c "from openfisca_france import CountryTaxBenefitSystem;
→˓CountryTaxBenefitSystem()"

No error message should appear. Congrats, you just installed OpenFisca-France!

4. Install atom

Atom is a modern text editor that doesn’t require administrator priviledges to be installed. It will allow you to edit
Python files with syntaxing coloring.

• Download atom from https://atom.io/

5. Write and run your own scripts

You can now write your own scripts, such as this tutorial.

To edit a script, open it with atom.

To run it, save your modifications, go to the directory containing it, right click and chose “Gith Bash Here”. Then
type:

python name-of-the-script.py

In case you run into a problem, please open an issue.

6.4. Work on OpenFisca on a Windows without being administrator 57

https://github.com/openfisca/openfisca-france-offline/archive/master.zip
https://atom.io/
https://raw.githubusercontent.com/Anna-Livia/formation-OF/master/calculer_param_reforme.py
https://github.com/openfisca/openfisca-core/issues/new

OpenFisca, Release

How to test your changes on “ready to use” situations (for
OpenFisca-France)

Often, when making changes to legislation, you need to test it on a situation that works with your country Tax & Benefit
system. Sometimes, these situations can be quite complicated to model (such as roomates). Instead of re-writing them
everytime, we have pre-packaged a few in a Python Package.

You can find the package along with a usage example in the Tutorial repository

As the OpenFisca community becomes larger, issues that only affect a small percentage of users arise.

The purpose of this section is to bring together the clever solutions the community came up with and share them with
all OpenFisca users.

• How to use OpenFisca on the web (no installation required on your computer)

• How to use OpenFisca with Docker

• How to install OpenFisca in an offline environment

• How to work on OpenFisca on a Windows without being administrator

• How to test your changes on “ready to use” situations

You’re welcome to share your tips on how to solve technical issues! Please update this section (in english)
or this wiki FAQ in your preferred language.

58 Chapter 6. Recipes for OpenFisca

https://github.com/openfisca/tutorial/tree/master/python/scripts/generate_situation_examples
https://github.com/openfisca/openfisca-doc/edit/master/recipes.md
https://github.com/openfisca/tutorial/wiki

CHAPTER 7

Publishing results based on OpenFisca

OpenFisca is free software made available under the AGPL license. This means that you are free to use, install and
modify it, and that you have to contribute your changes back to the community. This is the only way a contributive
digital common can be sustainable, so we are very happy that you take part in this shared effort!

Computation results

If you provide results based on OpenFisca usage, crediting the project would be very welcome in order to increase its
visibility and to increase its contributor base. More people means more maintenance and more upgrades!

The following HTML snippet can be used to credit OpenFisca in your articles and publications:

English

Computed by <img alt="OpenFisca" src="https://openfisca.org/img/logo-openfisca.svg"

→˓height="24" />.

Français

Calculé par <img alt="OpenFisca" src="https://openfisca.org/img/logo-openfisca.svg"

→˓height="24" />.

59

https://choosealicense.com/licenses/agpl-3.0/

OpenFisca, Release

Hosting an API instance

If you provide a service that uses OpenFisca, either bundled in a program or serving it over the network, be it directly
or wrapped through another API layer, you have to credit OpenFisca, give a link to its source code and license.

The following HTML snippet can be used to credit OpenFisca, for example in your footer or “about” page. Please
make sure to update the destination of the source code link if you use a modified version!

English

Computations powered by
<img alt="OpenFisca"

→˓src="https://openfisca.org/img/logo-openfisca.svg" height="24" />,
whose source code
is used under an <a href="https://choosealicense.com/licenses/agpl-3.0/" target="_

→˓blank" rel="noopener">AGPL license.

Français

Calculs fournis par
<img alt="OpenFisca"

→˓src="https://openfisca.org/img/logo-openfisca.svg" height="24" />,
dont le code source
est utilisé sous licence <a href="https://choosealicense.com/licenses/agpl-3.0/"

→˓target="_blank" rel="noopener">AGPL.

Changes

If you modify or extend OpenFisca, you are legally required to make those changes available to the community. The
easiest way to do it is to publish your fork of the core package, and of any country package, extension or reform, on a
source hosting platform such as GitHub, and to notify the core team of this publication.

You can read this analysis to get more insight on what you can and can’t do with APGL licensed software.

If you see opportunities in developping services/business/tools on top of OpenFisca but are concerned with the AGPL3
license implications, please open an issue to have a public discussion on the topic.

60 Chapter 7. Publishing results based on OpenFisca

https://choosealicense.com/licenses/agpl-3.0/
https://softwareengineering.stackexchange.com/questions/107883/agpl-what-you-can-do-and-what-you-cant/314908/
https://github.com/openfisca/openfisca-doc/issues/new

CHAPTER 8

Community

Slack

The OpenFisca community gathers around a Slack space, which you can ask to join by sending a mail to con-
tact@openfisca.org.

This space provides both community and official support, and centralises all countries’ channels.

Channels and naming conventions

In order to increase discoverability of channels and ease navigation, the following prefixes are used:

• of- channels are about quick discussions and requests for help on a technical module. To make decisions on
changes to apply to these modules, we use GitHub issues and Pull Requests on dedicated repositories.

• share- channels are newsrooms on which everyone is encouraged to share their news, learnings and accom-
plishments :)

For tax and benefit systems models, the following conventions are applied:

• Channels that centralise discussions around a specific tax and benefit system are given the name of the distributed
module, suffixed by -system. For example: france-system. If that full name is too long for the Slack
channel character limit, then a shortened version of the name is used.

• Channels that centralise discussions around extensions to tax and benefit systems are given that system’s module
name, followed by -ext- and an identifier for that extension. For example: france-ext-paris.

• System-specific group channels are campfires around which some specific organisations of contributors to a tax
and benefits system gather. When a country becomes large enough, it often happens that several employers of
contributors work concurrently on different parts of the system, and the main -system channel would become
unreadable. These channels are called that system’s module name, followed by -org- and an identifier for that
group. For example: france-org-gouv.

61

https://openfisca.slack.com
mailto:contact@openfisca.org?subject=Slack
mailto:contact@openfisca.org?subject=Slack

OpenFisca, Release

Contact

You can contact the OpenFisca maintainers through:

• GitHub if you have any technical issue.

• Twitter @OpenFisca for general inquiries and feedback.

• email for collaboration opportunities.

Project history

The development of OpenFisca began in May 2011 at the CAS (renamed France Stratégie / Commissariat général à la
stratégie et à la prospective in April 2013) with the support of the IDEP.

OpenFisca was originally developed as a desktop application using the Qt library with a Python API. This original
source code was released under a free software license in November 2011.

In the early 2014, Etalab started using OpenFisca and soon became a major contributor. It then decided to:

• separate the computing engine from its desktop user interface;

• offer a web API in addition to the Python API;

• demonstrate the value of the web API by developing sample applications including a web interface to simulate
personal cases;

• offer a public access to this web API;

• stop the development of the Qt version.

The core was improved extensively by Etalab, while the French model was being improved and updated by the CGSP
with the help of the IDEP and the IPP, soon to be joined by the French State Startups incubator which used and
extended the model for digital public services purposes.

The 2016 OGP Paris summit saw a demonstration that a small team could model the base of a tax and benefit system
from scratch under 36 hours, when the Sénégal income revenue tax was modelled and made usable with a web UI
during the OGP hackathon, winning the team the first prize.

This led in 2017 to a joint effort from Etalab and beta.gouv.fr with a major focus on stability, ease of contribution and
reusability. This lead to the full rewrite of the documentation, the opening of openfisca.org to replace openfisca.fr, and
the addition of new contributors from other French agencies, as well as international reusers with Barcelona joining
Tunisia.

62 Chapter 8. Community

https://twitter.com/OpenFisca
mailto:contact@openfisca.org
http://www.strategie.gouv.fr/
https://www.idep-fr.org/
http://www.qt.io/
https://www.etalab.gouv.fr/
https://github.com/openfisca/openfisca-qt
https://www.etalab.gouv.fr/
http://www.strategie.gouv.fr/
https://www.idep-fr.org/
http://www.ipp.eu/
https://beta.gouv.fr
https://github.com/openfisca/openfisca-senegal-ui
https://openfisca.org
https://github.com/jvalduvieco/openfisca-barcelona
https://github.com/openfisca/openfisca-tunisia

CHAPTER 9

Contribute

Contributor guidelines

The OpenFisca project follows the GitHub Flow.

Each Python package uses Semantic Versioning.

Opening issues

Each OpenFisca repository has its own issues. See OpenFisca repositories.

• Describe what you did.

• Describe what you expected to happen.

• Describe what happened.

• Include (or link to) any data that can help reproduce the issue you encountered.

Contributing to the code

Writing code

• If you modify/create/delete a simulation variable, please follow the commit message rules.

• When adding new variables, please consider the naming guidelines.

• Your code should be tested, if feasible:

– bugfixes should include regression tests

– new behavior should at least get minimal exercise

• Use atomic commits, in particular try to isolate “code-cleanup” commits

63

https://guides.github.com/introduction/flow/
http://semver.org/
https://github.com/openfisca

OpenFisca, Release

Opening a Pull Request

• All code contributions are submitted via a Pull Request towards master. The master branches are thus
protected.

• Opening a Pull Request means you want that code to be merged. If you want to only discuss it, send a link to
your branch along with your questions through whichever communication channel you prefer.

• If the Pull Request depends on another opened Pull Request on another repository (like OpenFisca-
Core/OpenFisca-France), the requirements should be updated in the dependent project via its setup.py.

It is considered a good practice to begin the name of the pull request with a verb in the present imperative tense:

Good
Propose a new reform according to the French finance bill 2018

Bad
new reform PLF 2018

Merging a Pull Request

Continuous integration

Before allowing you to merge a PR, the continuous integration server will ensure that:

• The automated tests are passing (they are triggered automatically and result is visible from the Pull Request
page).

• The semantic version number has been updated. Check the semantic versionning guidelines to know more about
how to increment the version number.

• The CHANGELOG.md has been updated. Make sure to briefly summarize your work, and to mention any non
backward-compatible changes.

Web API version number

Due to a pip limitation, it is required to increment the major version number of OpenFisca-Web-API when it is
adapted to a new major version of OpenFisca-Core. This rule avoids installing a version of OpenFisca-Core incom-
patible with the loaded country package (for example OpenFisca-France).

See also:

• this old pip issue

• the issue leading to this decision

Peer reviews

Pull requests should generally be reviewed by someone else than their authors.

This is mandatory for:

• Any Pull Request with breaking changes on openfisca-france, openfisca-web-api.

• Any Pull Request bringing new features, if these features are not relative to a specific scope.

– Adding a new route to the API requires a review.

64 Chapter 9. Contribute

https://help.github.com/articles/about-protected-branches/
https://github.com/openfisca/openfisca-france/blob/master/CHANGELOG.md
https://github.com/pypa/pip/issues/988
https://github.com/openfisca/openfisca-ops/issues/4#issuecomment-291900286

OpenFisca, Release

– A review is yet not mandatory to add a new formula to social contributions in openfisca-france. It
is though recommended.

To help reviewers, make sure to add to your PR a clear text explanation of your changes.

In case of breaking changes, you must give details about what features were deprecated. You must also provide
guidelines to help users adapt their code to be compatible with the new version of the package.

Language

The development language is English. All comments and documentation in common repositories should be written in
English, so that contributions can be made by developers around the world.

Country-specific repositories

Some repositories define the tax and benefit system of a specific country. In such cases, the language used throughout
issues and pull requests should be one of the native ones of that country.

For instance, openfisca-france issues and pull-requests should be written in French.

The end goal is always to maximise contributions and collaboration. In that case, the main contributors
will be experts from that country, and English should not be a barrier to entry.

Commit messages

Variable name changes

To avoid Openfisca users to be surprised by a non expected variable renaming breaking their code, we use standard
commit messages when renaming a variable. The syntax is formalized below. It must be respected precisely, to allow
automatic information extraction.

Renaming

Renaming one or several variables will be notified by a commit message with the following syntax, on one idependant
line per renamed variable:

Rename former_name to new_name

No other information must appear on this line.

Introducing

Introducing one or several new variables will be notified by a commit message with the following syntax, on one
idependant line per created variable:

Introduce new_name

No other information must appear on this line.

9.2. Language 65

OpenFisca, Release

Deprecating

If a variable must not be used anymore, it will be notified by a commit message with the following syntax, on one
idependant line per deprecated variable:

Deprecate former_name

No other information must appear on this line.

Openfisca variables naming guidelines

General philosophy

If you consider naming variables, you are in a country-specific repository, where the local language rule apply. The
domain language is thus one of the native ones of the modeled country. We consider each tax, collecting organism and
country regulation as a domain-specific term. In the same fashion, well-known abbreviations of these domain-specific
terms are accepted.

OpenFisca variables names should, as much as possible, be understandable by an external contributor who is curious
about the country tax and benefits system, without necessarily being an expert.

One should be able to get a rough idea of the meaning of a variable by reading its name, or by quickly researching it
on the web.

A particular effort should be made on variables that are likely to be reused.

Examples:

Good naming

als_etudiant: I don’t know what als stands for. I look it up on a search engine, and I see ALS are
a form of Aides Logement. I thus know this variable should be the amount of ALS for a student. This is
enough to tell me if it is interesting in my context.

Bad naming

apje_temp: I could find the meaning of APJE online, but the temp suffix remains a mystery.

rto_net. I can guess it’s an amout after some kind of deduction, but looking RTO on a search engine
doesn’t give me anything.

Do’s and don’ts

Acronyms

Acronyms are ok as long as they are broadly accepted and their meaning is quickly findable online.

OK: RSA, RFR

KO: PAC

66 Chapter 9. Contribute

OpenFisca, Release

Abbreviations

Abbreviations should be avoided unless they are undoubtedly transparent.

OK: nb_parents

KO: nb_par, isol

Scopes and prefixes

To show a variable belongs to a specific scope, it is better to use a prefix rather than a suffix.

OK: rsa_nb_enfants

KO: nb_enfants_rsa

Not specifying the scope of a specific variable should be avoided, as it is confusing for other users.

OK: ir_nb_pac

KO: nb_pac

Entity suffixes

It happens that several variables have the same meaning, but for different entitities (individus, familles, etc.). Standard
suffixes should be used to distinguish them.

OK: ass_base_ressources_individu, statut_occupation_logement_famille

Legacy

Many variables on the current codebase of OpenFisca France do not respect the guidelines presented here. An exhaut-
sive and global renaming is not considered as of today.

However, new variables should be compliant with these guidelines, and legacy ones should progressively and oppor-
tunistically be renamed.

Semantic versionning guidelines

Before merging your contribution to an openfisca package, you are required to increment the version of this package.

The semantic versionning convention, applied here, requires you to:

Given a version number MAJOR.MINOR.PATCH, increment the:

MAJOR version when you make incompatible API changes,

MINOR version when you add functionality in a backwards-compatible manner, and

PATCH version when you make backwards-compatible bug fixes.

It is thus crucial to determine whether your changes are backwards-compatible. If, during a hackathon, a contributor
has written a reform to Openfisca, would this reform still work after adding your changes ?

9.5. Semantic versionning guidelines 67

http://semver.org/

OpenFisca, Release

Examples in Openfisca context

Country package (e.g. openfisca-france)

Patch

• Correcting an error in a formula.

• Correcting the value of a parameter.

Minor

• Introducing a new formula.

• Introducing a parameter.

Major

• Renaming or deprecating a variable.

• Changing the default value of a variable.

• Deprecating a parameter.

• Changing the sctructure of the parameter tree.

About this documentation

It is written in Markdown and the source is hosted on this GitHub repository: openfisca/openfisca-doc.

Collaborative editing

Everybody can participate to the redaction of the documentation.

On each page there is a link named “Edit this page”. Just click on it and you’ll jump on GitHub on the Markdown
source file of the page. Then edit the file as explained on this GitHub documentation page: editing-files-in-another-
user-s-repository.

Then save the file and create a pull request which will be accepted if relevant.

Build it yourself

Check this documentation’s README.

OpenFisca extensions

Extensions allow you to define new variables or parameters for a tax and benefit system, while keeping their code
separated from the main country package. They can only add variables and parameters to the tax and benefit system:
they cannot modify or neutralize existing ones.

They are for instance used to code local prestations.

68 Chapter 9. Contribute

https://toolchain.gitbook.com/syntax/markdown.html
https://github.com/openfisca/openfisca-doc
https://help.github.com/articles/editing-files-in-another-user-s-repository/
https://help.github.com/articles/editing-files-in-another-user-s-repository/
https://help.github.com/articles/creating-a-pull-request/
https://github.com/openfisca/openfisca-doc/blob/master/README.md

OpenFisca, Release

Extensions are sometimes confused with another mechanism: reforms. Read more about their respective
uses.

Extensions can be manually loaded to a tax and benefit system using the load_extension method.

Extension architecture

The architecture of an extension folder is the following:

{extension_name}/ # The folder name is by convention the name of the extension.
{extension_name}/__init__.py # Empty file.
{extension_name}/{some_formula}.py # File containing formulas
{extension_name}/{other_formula}.py
{extension_name}/parameters # Optional parameters directory.
{extension_name}/parameters/{new_tax}
{extension_name}/parameters/{new_tax}/{rate}.yaml
{extension_name}/tests/{some_formula}.yaml # Optional test files
{extension_name}/tests/{other_formula}.yaml

All python files located directly in {extension_name}/ are imported in the tax and benefit system.

The syntax of the formulas within extension python files is the same than in the general country package formulas
(e.g. from openfisca_france.model.base import *).

Variables inside an extension should not have the same name than any existing formula, nor than any formula in
another extension being used.

Developer guide

Source code repositories

The OpenFisca project is distributed across many Git repositories:

• OpenFisca-Core

• OpenFisca-France

Debugging code

If you install ipdb (pip install ipdb) the API server will drop you into a debugger when an exception occurs:

$ paster serve --reload development-france.ini
Starting server in PID 3815.
serving on 0.0.0.0:2000 view at http://127.0.0.1:2000
model.py(52)get_cached_composed_reform()

51
---> 52 full_key = '.'.join(

53 tax_benefit_system.full_key + reform_keys

ipdb> tax_benefit_system
<openfisca_web_api.environment.TaxBenefitSystem object at 0x7f7eb8e88d10>
ipdb> tax_benefit_system.full_key
u'paris'
ipdb>

9.8. Developer guide 69

http://openfisca.readthedocs.io/en/latest/tax-benefit-system.html#openfisca_core.taxbenefitsystems.TaxBenefitSystem.load_extension
https://github.com/openfisca/openfisca-core
https://github.com/openfisca/openfisca-france
https://github.com/gotcha/ipdb

OpenFisca, Release

Profiling code

To profile the execution of a portion of code, wrap it with these lines:

+ import cProfile
+ pr = cProfile.Profile()
+ pr.enable()

[...portion of code...]

+ pr.disable()
+ pr.dump_stats('result.profile')

Each time you call the endpoint a result.profile file is written. To prevent it to be overwritten, generate a
dynamic name with tempfile.mkstemp.

Then you can use the runsnakerun GUI to inspect the profile data.

Under Debian GNU/Linux:

aptitude install runsnakerun

Tests

OpenFisca has three sorts of tests:

• unit tests

• test-case tests

• scenario tests

Run tests

OpenFisca uses nose to run its unit tests. Here are some useful commands.

• Run the whole test suite:

make test

which is available at least in Core, France and Web-API repositories.

• Run a specific test:

nosetests openfisca_france/tests/test_parameters.py

• Hide log of failing test:

nosetests --nologcapture openfisca_france/tests/test_parameters.py

• Display log of successful test:

nosetests --debug=openfisca_core openfisca_france/tests/test_parameters.py

70 Chapter 9. Contribute

https://docs.python.org/2/library/tempfile.html#tempfile.mkstemp
http://www.vrplumber.com/programming/runsnakerun/
https://nose.readthedocs.org/

OpenFisca, Release

YAML tests

Formulas are tested with YAML tests.

ipdb debugger

If a test fails, you can execute it with the debug nose plugin:

nosetests --pdb openfisca_core/tests/test_tax_scales.py

You’ll be dropped in the pdf debugger shell when an error occurs.

You can specify the exact test to launch:

nosetests --pdb openfisca_core/tests/test_tax_scales.py:test_linear_average_rate_tax_
→˓scale

The nose-ipdb plugin is more user-friendly (because it uses the ipdb debugger instead of pdb). In this
case, just use the --ipdb option rather than --pdb. See also the --ipdb-failure option.

In case you want to set a breakpoint manually, in order to enter the debugger shell before an errors occurs, copy-paste
this line in your code:

import nose.tools; nose.tools.set_trace(); import ipdb; ipdb.set_trace()

This needs ipdb to be installed.

Hint: use the snippets feature of your favorite text editor to save this line, for example give it the name
“breakpoint”.

Continuous integration

All OpenFisca official packages are continuously tested. All tests run automatically after each git push.

Release process

Continuous deployment

All OpenFisca official packages are continuously released.

When a pull request is merged to the master branch, a continuous integration server automatically:

• Publishes a version tag on GitHub.

• Publishes a release on PyPI.

OpenFisca is a free software project and contributors are very welcome!

Feel free to fork the source code repositories on GitHub and send us pull-requests.

You can contact the community to ask for help.

Thanks for enhancing OpenFisca anyway!

9.10. Release process 71

https://nose.readthedocs.org/en/latest/plugins/debug.html
https://nose.readthedocs.org/en/latest/usage.html#selecting-tests
https://github.com/flavioamieiro/nose-ipdb/
https://github.com/gotcha/ipdb
https://github.com/gotcha/ipdb
https://pypi.python.org/pypi
https://github.com/openfisca

OpenFisca, Release

Why contribute to OpenFisca?

OpenFisca is a project being developed under the AGPL-3.0 license. The source code is freely available and modifi-
able. Please refer to the Publishing results based on OpenFisca page for a detailed explanation of the implications of
this provision.

We encourage users to send their comments and suggestions for improvement, and to report any inaccuracy or error
they might have found. If you want to participate more actively in its development, know that there are multiple ways
contribute to the OpenFisca project.

How to contribute?

Use the API and direct its development

• Share your uses: you are welcome to keep us informed of the uses you make of the API including visualizations
you may create. We’d love to be able to include them on the OpenFisca website.

• Suggest features: please tell us about the improvements to the API you would like to see, so that we can make
it meet your needs.

• Participate directly in the API’s development.

Test and report errors (web API)

You can contribute to the development of OpenFisca by reporting errors you would find on the calculation of benefits
and taxes.

To enable the OpenFisca developers to solve your problems quickly, please follow these few steps:

• try to create a minimal standard case that generates the error;

• verify that this error is not already listed;

• try to identify the source of the error by inspecting the formulas for the different benefits and taxes;

• report the error, with as much information as possible. If possible, please provide the code that allows to
reproduce the error or the JSON file of the standard case you created.

Complete the implementation of the French tax and benefit system

Some pieces of legislation are not yet integrated. Given the magnitude of the task, our ambition is to build a community
of developers, economists and experts on taxes or social benefits to maintain and improve the software. You can help
by following these steps:

• identify the incomplete or missing taxes or benefits;

• gather the necessary documentation to fix this issue;

• propose patches that implement the incomplete or missing benefits and taxes on GitHub.

Write some legislation

From the point of view of someone (developer, economist, etc.) who wants to implement a part of the legislation, for
example a new benefit, here are some key steps:

72 Chapter 9. Contribute

https://www.gnu.org/licenses/agpl-3.0.en.html
https://github.com/openfisca/openfisca-core
https://github.com/openfisca/openfisca-france/issues?state=open
https://fr.openfisca.org/legislation
https://github.com/openfisca/openfisca-france/issues/new
https://github.com/openfisca/openfisca-france/

OpenFisca, Release

• understand the part of the legislation you want to implement

• identify the variable dependencies using the legislation explorer

• identify the new variables you need to implement

• write the new variables with their formulas, and make sure their names respect the guidelines you can find here.

• store the new parameters

• if you implement a part of the official legislation, your code should go in OpenFisca-France, but if you imple-
ment a new idea or a future reform, your code should go in a reform.

Write reforms

Enhance other projects linked to OpenFisca

You can also participate in other projects that make use of OpenFisca.

9.12. How to contribute? 73

https://fr.openfisca.org/legislation/

OpenFisca, Release

74 Chapter 9. Contribute

CHAPTER 10

Openfisca Python API

Modules:

TaxBenefitSystem

class openfisca_core.taxbenefitsystems.TaxBenefitSystem(entities)
Represents the legislation.

It stores parameters (values defined for everyone) and variables (values defined for some given entity e.g. a
person).

Parameters

• entities – Entities used by the tax benefit system.

• parameters (string) – Directory containing the YAML parameter files.

parameters
ParameterNode containing the legislation parameters

add_variable(variable)
Adds an OpenFisca variable to the tax and benefit system.

Parameters variable (Variable) – The variable to add. Must be a subclass of Variable.

Raises VariableNameConflict if a variable with the same name have previously been
added to the tax and benefit system.

add_variables(*variables)
Adds a list of OpenFisca Variables to the TaxBenefitSystem.

See also add_variable

add_variables_from_directory(directory)
Recursively explores a directory, and adds all OpenFisca variables found there to the tax and benefit sys-
tem.

75

OpenFisca, Release

add_variables_from_file(file_path)
Adds all OpenFisca variables contained in a given file to the tax and benefit system.

apply_reform(reform_path)
Generates a new tax and benefit system applying a reform to the tax and benefit system.

The current tax and benefit system is not mutated.

Parameters reform_path (string) – The reform to apply. Must respect the format in-
stalled_package.sub_module.reform

Returns A reformed tax and benefit system.

Exemple:

>>> self.apply_reform('openfisca_france.reforms.inversion_revenus')

get_package_metadata()
Gets metatada relative to the country package the tax and benefit system is built from.

Returns Country package metadata

Return type dict

Exemple:

>>> tax_benefit_system.get_package_metadata()
>>> {
>>> 'location': '/path/to/dir/containing/package',
>>> 'name': 'openfisca-france',
>>> 'repository_url': 'https://github.com/openfisca/openfisca-france',
>>> 'version': '17.2.0'
>>> }

get_parameters_at_instant(instant)
Get the parameters of the legislation at a given instant

Parameters instant – string of the format ‘YYYY-MM-DD’ or open-
fisca_core.periods.Instant instance.

Returns The parameters of the legislation at a given instant.

Return type ParameterNodeAtInstant

get_variable(variable_name, check_existence=False)
Get a variable from the tax and benefit system.

Parameters

• variable_name – Name of the requested variable.

• check_existence – If True, raise an error if the requested variable does not exist.

get_variables(entity=None)
Gets all variables contained in a tax and benefit system.

Parameters subclass> entity (<Entity) – If set, returns only the variable defined for
the given entity.

Returns A dictionnary, indexed by variable names.

Return type dict

load_extension(extension)
Loads an extension to the tax and benefit system.

76 Chapter 10. Openfisca Python API

OpenFisca, Release

Parameters extension (string) – The extension to load. Can be an absolute path pointing
to an extension directory, or the name of an OpenFisca extension installed as a pip package.

load_parameters(path_to_yaml_dir)
Loads the legislation parameter for a directory containing YAML parameters files.

Parameters path_to_yaml_dir – Absolute path towards the YAML parameter directory.

Exemples:

>>> self.load_parameters('/path/to/yaml/parameters/dir')

neutralize_variable(variable_name)
Neutralizes an OpenFisca variable existing in the tax and benefit system.

A neutralized variable always returns its default value when computed.

Trying to set inputs for a neutralized variable has no effect except raising a warning.

replace_variable(variable)
Replaces an existing OpenFisca variable in the tax and benefit system by a new one.

The new variable must have the same name than the replaced one.

If no variable with the given name exists in the tax and benefit system, no error will be raised and the new
variable will be simply added.

Parameters variable (Variable) – New variable to add. Must be a subclass of Variable.

update_variable(variable)
Updates an existing OpenFisca variable in the tax and benefit system.

All attributes of the updated variable that are not explicitely overridden by the new variable will stay
unchanged.

The new variable must have the same name than the updated one.

If no variable with the given name exists in the tax and benefit system, no error will be raised and the new
variable will be simply added.

Parameters variable (Variable) – Variable to add. Must be a subclass of Variable.

exception openfisca_core.taxbenefitsystems.VariableNameConflict
Exception raised when two variables with the same name are added to a tax and benefit system.

Variables

class openfisca_core.variables.Variable(baseline_variable=None)
A variable of the legislation.

Main attributes:

value_type
The value type of the variable. Possible value types in OpenFisca are int float bool str
date and Enum.

entity
Entity the variable is defined for. For instance : Person, Household.

definition_period
Period the variable is defined for. Possible value: MONTH, YEAR, ETERNITY.

10.2. Variables 77

http://openfisca.org/doc/variables.html
http://openfisca.org/doc/person,_entities,_role.html
http://openfisca.org/doc/coding-the-legislation/35_periods.html

OpenFisca, Release

formulas
Formulas used to calculate the variable

label
Description of the variable

reference
Legislative reference describing the variable.

default_value
Default value of the variable.

Secondary attributes:

baseline_variable
If the variable has been introduced in a reform to replace another variable, baseline_variable is
the replaced variable.

dtype
Numpy dtype used under the hood for the variable.

end
Date when the variable disappears from the legislation.

is_neutralized
True if the variable is neutralized. Neutralized variables never use their formula, and only return
their default values when calculated.

json_type
JSON type corresponding to the variable.

max_length
If the value type of the variable is str, max length of the string allowed. None if there is no
limit.

possible_values
If the value type of the variable is Enum, contains the values the variable can take.

set_input
Function used to automatically process variable inputs defined for periods not matching the
definition_period of the variable. See more on the documentation. Possible values are
set_input_dispatch_by_period, set_input_divide_by_period, or nothing.

unit
Free text field describing the unit of the variable. Only used as metadata.

documentation
Free multilines text field describing the variable context and usage.

get_formula(period=None)
Returns the formula used to compute the variable at the given period.

If no period is given and the variable has several formula, return the oldest formula.

Returns Formula used to compute the variable

Return type function

classmethod get_introspection_data(tax_benefit_system)
Get instrospection data about the code of the variable.

Returns (comments, source file path, source code, start line number)

Return type tuple

78 Chapter 10. Openfisca Python API

http://openfisca.org/doc/variables.html#default-values
http://openfisca.org/doc/reforms.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dtype.html
http://openfisca.org/doc/coding-the-legislation/40_legislation_evolutions.html#variable-end
http://openfisca.org/doc/coding-the-legislation/35_periods.html#automatically-process-variable-inputs-defined-for-periods-not-matching-the-definitionperiod

OpenFisca, Release

is_input_variable()
Returns True if the variable is an input variable.

parse_formula_name(attribute_name)
Returns the starting date of a formula based on its name.

Valid dated name formats are : ‘formula’, ‘formula_YYYY’, ‘formula_YYYY_MM’ and ‘for-
mula_YYYY_MM_DD’ where YYYY, MM and DD are a year, month and day.

By convention, the starting date of:

• formula is 0001-01-01 (minimal date in Python)

• formula_YYYY is YYYY-01-01

• formula_YYYY_MM is YYYY-MM-01

openfisca_core.variables.get_neutralized_variable(variable)
Return a new neutralized variable (to be used by reforms). A neutralized variable always returns its default
value, and does not cache anything.

Parameters

Handle legislative parameters.

class openfisca_core.parameters.Bracket(name=u’‘, directory_path=None, data=None,
file_path=None)

A scale bracket.

class openfisca_core.parameters.Parameter(name, data, file_path=None)
A parameter of the legislation. Parameters can change over time.

Parameters

• name (string) – Name of the parameter, e.g. “taxes.some_tax.some_param”

• data (dict) – Data loaded from a YAML file.

• file_path (string) – File the parameter was loaded from.

• documentation (string) – Documentation describing parameter usage and context.

Instantiate a parameter without metadata:

>>> Parameter('rate', data = {
"2015-01-01": 550,
"2016-01-01": 600
})

Instantiate a parameter with metadata:

>>> Parameter('rate', data = {
'description': 'Income tax rate applied on salaries',
'values': {

"2015-01-01": {'value': 550, 'metadata': {'reference': 'http://taxes.
→˓gov/income_tax/2015'}},

"2016-01-01": {'value': 600, 'metadata': {'reference': 'http://taxes.
→˓gov/income_tax/2016'}}

}
})

10.3. Parameters 79

OpenFisca, Release

values_list
List of the values, in reverse chronological order

update(period=None, start=None, stop=None, value=None)
Change the value for a given period.

Parameters

• period – Period where the value is modified. If set, start and stop should be None.

• start – Start of the period. Instance of openfisca_core.periods.Instant. If set, period
should be None.

• stop – Stop of the period. Instance of openfisca_core.periods.Instant. If set, period
should be None.

• value – New value. If None, the parameter is removed from the legislation parameters
for the given period.

class openfisca_core.parameters.ParameterAtInstant(name, instant_str, data=None,
file_path=None, metadata=None)

A value of a parameter at a given instant.

class openfisca_core.parameters.ParameterNode(name=u’‘, directory_path=None,
data=None, file_path=None)

A node in the legislation parameter tree.

add_child(name, child)
Add a new child to the node.

Parameters

• name – Name of the child that must be used to access that child. Should not contain
anything that could interfere with the operator . (dot).

• child – The new child, an instance of Scale or Parameter or ParameterNode.

get_descendants()
Return a generator containing all the parameters and nodes recursively contained in this ParameterNode

merge(other)
Merges another ParameterNode into the current node.

In case of child name conflict, the other node child will replace the current node child.

class openfisca_core.parameters.ParameterNodeAtInstant(name, node, instant_str)
Parameter node of the legislation, at a given instant.

exception openfisca_core.parameters.ParameterNotFound(name, instant_str, vari-
able_name=None)

Exception raised when a parameter is not found in the parameters.

exception openfisca_core.parameters.ParameterParsingError(message, file=None, trace-
back=None)

Exception raised when a parameter cannot be parsed.

class openfisca_core.parameters.Scale(name, data, file_path)
A parameter scale (for instance a marginal scale).

class openfisca_core.parameters.VectorialParameterNodeAtInstant(name, vector, in-
stant_str)

Parameter node of the legislation at a given instant which has been vectorized. Vectorized parameters allow
requests such as parameters.housing_benefit[zipcode], where zipcode is a vector

80 Chapter 10. Openfisca Python API

http://openfisca.org/doc/coding-the-legislation/legislation_parameters.html

OpenFisca, Release

static check_node_vectorisable(node)
Check that a node can be casted to a vectorial node, in order to be able to use fancy indexing.

openfisca_core.parameters.load_parameter_file(file_path, name=u’‘)
Load parameters from a YAML file (or a directory containing YAML files).

Returns An instance of ParameterNode or Scale or Parameter.

Reforms

class openfisca_core.reforms.Reform(baseline)
A modified TaxBenefitSystem

All reforms must subclass Reform and implement a method apply().

In this method, the reform can add or replace variables and call modify_parameters to modify the param-
eters of the legislation.

Example:

>>> from openfisca_core import reforms
>>> from openfisca_core.parameters import load_parameter_file
>>>
>>> def modify_my_parameters(parameters):
>>> # Add new parameters
>>> new_parameters = load_parameter_file(name='reform_name', file_path='path_
→˓to_yaml_file.yaml')
>>> parameters.add_child('reform_name', new_parameters)
>>>
>>> # Update a value
>>> parameters.taxes.some_tax.some_param.update(period=some_period,
→˓value=1000.0)
>>>
>>> return parameters
>>>
>>> class MyReform(reforms.Reform):
>>> def apply(self):
>>> self.add_variable(some_variable)
>>> self.update_variable(some_other_variable)
>>> self.modify_parameters(modifier_function = modify_my_parameters)

modify_parameters(modifier_function)
Make modifications on the parameters of the legislation

Call this function in apply() if the reform asks for legislation parameter modifications.

Parameters modifier_function – A function that takes an object of type
ParameterNode and should return an object of the same type.

Simulation

class openfisca_core.simulations.Simulation(tax_benefit_system, simulation_json=None,
debug=False, period=None, trace=False,
opt_out_cache=False, memory_config=None)

Represents a simulation, and handles the calculation logic

10.4. Reforms 81

OpenFisca, Release

calculate(variable_name, period, **parameters)
Calculate the variable variable_name for the period period, using the variable formula if it exists.

Returns A numpy array containing the result of the calculation

get_array(variable_name, period)
Return the value of variable_name for period, if this value is alreay in the cache (if it has been set
as an input or previously calculated).

Unlike calculate, this method does not trigger calculations and does not use any formula.

get_holder(variable_name)
Get the Holder associated with the variable variable_name for the simulation

get_memory_usage(variables=None)
Get data about the virtual memory usage of the simulation

Entities

class openfisca_core.entities.Entity(simulation, entities_json=None)
Represents an entity (e.g. a person, a household, etc.) on which calculations can be run.

__call__(variable_name, period=None, options=[], **parameters)
Calculate the variable variable_name for the entity and the period period, using the variable formula
if it exists.

Example:

>>> person('salary', '2017-04')
>>> array([300.])

Returns A numpy array containing the result of the calculation

class openfisca_core.entities.PersonEntity(simulation, entities_json=None)
Represents a person on which calculations are run.

get_rank(entity, criteria, condition=True)
Get the rank of a person within an entity according to a criteria. The person with rank 0 has the minimum
value of criteria. If condition is specified, then the persons who don’t respect it are not taken into account
and their rank is -1.

Exemple:

>>> age = person('age', period) # e.g [32, 34, 2, 8, 1]
>>> person.get_rank(household, age)
>>> [3, 4, 0, 2, 1]

>>> is_child = person.has_role(Household.CHILD) # [False, False, True, True,
→˓True]
>>> person.get_rank(household, - age, condition = is_child) # Sort in
→˓reverse order so that the eldest child gets the rank 0.
>>> [-1, -1, 1, 0, 2]

has_role(role)
Check if a person has a given role within its GroupEntity

Exemple:

82 Chapter 10. Openfisca Python API

OpenFisca, Release

>>> person.has_role(Household.CHILD)
>>> array([False])

class openfisca_core.entities.GroupEntity(simulation, entities_json=None)
Represents an entity composed of several persons with different roles, on which calculations are run.

all(array, role=None)
Return True if array is True for all members of the entity.

array must have the dimension of the number of persons in the simulation

If role is provided, only the entity member with the given role are taken into account.

Example:

>>> salaries = household.members('salary', '2018-01') # e.g. [2000, 1500, 0,
→˓0, 0]
>>> household.all(salaries >= 1800)
>>> array([False])

any(array, role=None)
Return True if array is True for any members of the entity.

array must have the dimension of the number of persons in the simulation

If role is provided, only the entity member with the given role are taken into account.

Example:

>>> salaries = household.members('salary', '2018-01') # e.g. [2000, 1500, 0,
→˓0, 0]
>>> household.any(salaries >= 1800)
>>> array([True])

max(array, role=None)
Return the maximum value of array for the entity members.

array must have the dimension of the number of persons in the simulation

If role is provided, only the entity member with the given role are taken into account.

Example:

>>> salaries = household.members('salary', '2018-01') # e.g. [2000, 1500, 0,
→˓0, 0]
>>> household.max(salaries)
>>> array([2000])

min(array, role=None)
Return the minimum value of array for the entity members.

array must have the dimension of the number of persons in the simulation

If role is provided, only the entity member with the given role are taken into account.

Example:

>>> salaries = household.members('salary', '2018-01') # e.g. [2000, 1500, 0,
→˓0, 0]
>>> household.min(salaries)
>>> array([0])

10.6. Entities 83

OpenFisca, Release

>>> household.min(salaries, role = Household.PARENT) # Assuming the 1st two
→˓persons are parents
>>> array([1500])

nb_persons(role=None)
Returns the number of persons contained in the entity.

If role is provided, only the entity member with the given role are taken into account.

sum(array, role=None)
Return the sum of array for the members of the entity.

array must have the dimension of the number of persons in the simulation

If role is provided, only the entity member with the given role are taken into account.

Example:

>>> salaries = household.members('salary', '2018-01') # e.g. [2000, 1500, 0,
→˓0, 0]
>>> household.sum(salaries)
>>> array([3500])

tools.test_runner

A module to run openfisca yaml tests

openfisca_core.tools.test_runner.generate_tests(tax_benefit_system, paths, options={})
Generates a lazy iterator of all the YAML tests contained in a file or a directory.

Parameters Same as run_tests()

Returns a generator of YAML tests

openfisca_core.tools.test_runner.run_tests(tax_benefit_system, paths, options={})
Runs all the YAML tests contained in a file or a directory.

If path is a directory, subdirectories will be recursively explored.

Parameters

• tax_benefit_system (TaxBenefitSystem) – the tax-benefit system to use to run
the tests

• paths ((str/list)) – A path, or a list of paths, towards the files or directories contain-
ing the tests to run. If a path is a directory, subdirectories will be recursively explored.

• options (dict) – See more details below.

Raises AssertionError – if a test does not pass

Returns the number of sucessful tests excecuted

Testing options:

Key Type Role
verbose bool See openfisca-run-test options docname_filter str

Tests can also be run in the console with openfisca-run-test.

84 Chapter 10. Openfisca Python API

OpenFisca, Release

Tracer

class openfisca_core.tracers.Tracer
A tracer that records simulation steps to enable exploring calculation steps in details.

requested_calculations
set containing calculations that have been directly requested by the client.

Value example:

>>> {'income_tax<2017-01>', 'basic_income<2017-01>'}

stack
list of the calculations that have started, but have not finished. The first item is one of the
requested_calculations, and each other item is a dependency of the one preceding him. Note
that after a calculation is finished, stack is always [].

Value example:

>>> ['income_tax<2017-01>', 'global_income<2017-01>', 'salary<2017-01>']

trace
dict containing, for each calculation, its result and its immediate dependencies.

Value example:

{
'income_tax<2017-01>': {
'dependencies':['global_income<2017-01>', 'nb_children<2017-01>'],
'parameters' : {'taxes.income_tax_rate<2015-01>': 0.15, ...},
'value': 600
},

'global_income<2017-01>': {...}
}

usage_stats
dict containing, for each variable computed, the number of times the variable was requested.

Value example:

{
'salary': {
'nb_requests': 17
},

'global_income': {
'nb_requests': 1
}

}

print_computation_log(aggregate=False)
Print the computation log of a simulation.

If aggregate is False (default), print the value of each computed vector.

If aggregate is True, only print the minimum, maximum, and average value of each computed vector.
This mode is more suited for simulations on a large population.

print_trace(variable_name, period, extra_params=None, max_depth=1, aggregate=False, ig-
nore_zero=False)

10.8. Tracer 85

OpenFisca, Release

Print value, the dependencies, and the dependencies values of the variable for the given period (and possi-
bly the given set of extra parameters).

Parameters

• variable_name (str) – Name of the variable to investigate

• period (Period) – Period to investigate

• extra_params (list) – Set of extra parameters

• max_depth (int) – Maximum level of recursion

• aggregate (bool) – See print_computation_log

• ignore_zero (bool) – If True, don’t print dependencies if their value is 0

record_calculation_abortion(variable_name, period, **parameters)
Record that OpenFisca aborted computing a variable. This removes all trace of this computation.

Parameters

• variable_name (str) – Name of the variable starting to be computed

• period (Period) – Period for which the variable is being computed

• parameters (list) – Parameter with which the variable is being computed

record_calculation_end(variable_name, period, result, **parameters)
Record that OpenFisca finished computing a variable.

Parameters

• variable_name (str) – Name of the variable starting to be computed

• period (Period) – Period for which the variable is being computed

• result (numpy.ndarray) – Result of the computation

• parameters (list) – Parameter with which the variable is being computed

record_calculation_start(variable_name, period, **parameters)
Record that OpenFisca started computing a variable.

Parameters

• variable_name (str) – Name of the variable starting to be computed

• period (Period) – Period for which the variable is being computed

• parameters (list) – Parameter with which the variable is being computed

Enum & EnumArray

class openfisca_core.indexed_enums.Enum(name)
Enum based on enum34, whose items have an index.

classmethod encode(array)
Encode a string numpy array, or an enum item numpy array, into an EnumArray . See EnumArray.
decode for decoding.

Parameters array (numpy.ndarray) – Numpy array of string identifiers, or of enum items,
to encode.

Returns An EnumArray encoding the input array values.

86 Chapter 10. Openfisca Python API

https://pypi.python.org/pypi/enum34/

OpenFisca, Release

Return type EnumArray

For instance:

>>> string_identifier_array = numpy.asarray(['free_lodger', 'owner'])
>>> encoded_array = HousingOccupancyStatus.encode(string_identifier_array)
>>> encoded_array[0]
>>> 2 # Encoded value

>>> enum_item_array = numpy.asarray([HousingOccupancyStatus.free_lodger,
→˓HousingOccupancyStatus.owner])
>>> encoded_array = HousingOccupancyStatus.encode(enum_item_array)
>>> encoded_array[0]
>>> 2 # Encoded value

class openfisca_core.indexed_enums.EnumArray
Numpy array subclass representing an array of enum items.

EnumArrays are encoded as int arrays to improve performance

decode()
Return the array of enum items corresponding to self

>>> enum_array = household('housing_occupancy_status', period)
>>> enum_array[0]
>>> 2 # Encoded value
>>> enum_array.decode()[0]
>>> <HousingOccupancyStatus.free_lodger: 'Free lodger'> # Decoded value :
→˓enum item

Holders

class openfisca_core.holders.Holder(variable, entity)
A holder keeps tracks of a variable values after they have been calculated, or set as an input.

clone(entity)
Copy the holder just enough to be able to run a new simulation without modifying the original simulation.

default_array()
Return a new array of the appropriate length for the entity, filled with the variable default values.

delete_arrays(period=None)
If period is None, remove all known values of the variable.

If period is not None, only remove all values for any period included in period (e.g. if period is “2017”,
values for “2017-01”, “2017-07”, etc. would be removed)

get_array(period, extra_params=None)
Get the value of the variable for the given period (and possibly a list of extra parameters).

If the value is not known, return None.

get_known_periods()
Get the list of periods the variable value is known for.

get_memory_usage()
Get data about the virtual memory usage of the holder.

Returns Memory usage data

10.10. Holders 87

OpenFisca, Release

Return type dict

Exemple:

>>> holder.get_memory_usage()
>>> {
>>> 'nb_arrays': 12, # The holder contains the variable values for 12
→˓different periods
>>> 'nb_cells_by_array': 100, # There are 100 entities (e.g. persons) in
→˓our simulation
>>> 'cell_size': 8, # Each value takes 8B of memory
>>> 'dtype': dtype('float64') # Each value is a float 64
>>> 'total_nb_bytes': 10400 # The holder uses 10.4kB of virtual memory
>>> 'nb_requests': 24 # The variable has been computed 24 times
>>> 'nb_requests_by_array': 2 # Each array stored has been on average
→˓requested twice
>>> }

set_input(period, array)
Set a variable’s value (array) for a given period (period)

Parameters

• array – the input value for the variable

• period – the period at which the value is setted

Exemple :

>>> holder.set_input([12, 14], '2018-04')
>>> holder.get_array('2018-04')
>>> [12, 14]

If a set_input property has been set for the variable, this method may accept inputs for periods not
matching the definition_period of the variable. To read more about this, check the documentation.

openfisca_core.holders.set_input_dispatch_by_period(holder, period, array)
This function can be declared as a set_input attribute of a variable.

In this case, the variable will accept inputs on larger periods that its definition period, and the value for the larger
period will be applied to all its subperiods.

To read more about set_input attributes, check the documentation.

openfisca_core.holders.set_input_divide_by_period(holder, period, array)
This function can be declared as a set_input attribute of a variable.

In this case, the variable will accept inputs on larger periods that its definition period, and the value for the larger
period will be divided between its subperiods.

To read more about set_input attributes, check the documentation.

Simulation generator

openfisca_core.scripts.simulation_generator.make_simulation(tax_benefit_system,
nb_persons,
nb_groups,
**kwargs)

Generate a simulation containing nb_persons persons spread in nb_groups groups.

88 Chapter 10. Openfisca Python API

http://openfisca.org/doc/coding-the-legislation/35_periods.html#automatically-process-variable-inputs-defined-for-periods-not-matching-the-definitionperiod
http://openfisca.org/doc/coding-the-legislation/35_periods.html#automatically-process-variable-inputs-defined-for-periods-not-matching-the-definitionperiod
http://openfisca.org/doc/coding-the-legislation/35_periods.html#automatically-process-variable-inputs-defined-for-periods-not-matching-the-definitionperiod

OpenFisca, Release

Exemple:

>>> from openfisca_core.scripts.simulation_generator import make_simulation
>>> from openfisca_france import CountryTaxBenefitSystem
>>> tbs = CountryTaxBenefitSystem()
>>> simulation = make_simulation(tbs, 400, 100) # Create a simulation with 400
→˓persons, spread among 100 families
>>> simulation.calculate('revenu_disponible', 2017)

openfisca_core.scripts.simulation_generator.randomly_init_variable(simulation,
vari-
able_name,
period,
max_value,
condi-
tion=None)

Initialise a variable with random values (from 0 to max_value) for the given period. If a condition vector is
provided, only set the value of persons or groups for which condition is True.

Exemple:

>>> from openfisca_core.scripts.simulation_generator import make_simulation,
→˓randomly_init_variable
>>> from openfisca_france import CountryTaxBenefitSystem
>>> tbs = CountryTaxBenefitSystem()
>>> simulation = make_simulation(tbs, 400, 100) # Create a simulation with 400
→˓persons, spread among 100 families
>>> randomly_init_variable(simulation, 'salaire_net', 2017, max_value = 50000,
→˓condition = simulation.persons.has_role(simulation.famille.DEMANDEUR)) #
→˓Randomly set a salaire_net for all persons between 0 and 50000?
>>> simulation.calculate('revenu_disponible', 2017)

Scripts:

openfisca-run-test

usage: openfisca-run-test [-h] [-c COUNTRY_PACKAGE]
[-e [EXTENSIONS [EXTENSIONS ...]]]
[-r [REFORMS [REFORMS ...]]] [-n NAME_FILTER] [-v]
[-o [ONLY_VARIABLES [ONLY_VARIABLES ...]]]
[-i [IGNORE_VARIABLES [IGNORE_VARIABLES ...]]]
path [path ...]

Positional Arguments

path

Named Arguments

-c, --country-package

-e, --extensions

-r, --reforms

10.12. openfisca-run-test 89

OpenFisca, Release

-n, --name_filter

-v, --verbose Default: False

-o, --only-variables

-i, --ignore-variables

Examples

Let’s assume that in the country package openfisca_france, net_salary is always 80% of gross_salary.

Basic use

test.yaml:

- name: "Basic test"
period: 2015
input_variables:
gross_salary: 2000

output_variables:
net_salary: 2000 * 0.8

Command line:

openfisca-run-test -c openfisca_france test.yaml
Success

openfisca-run-test test.yaml
Success: the country package is automatically detected.
May fail if several country packages are installed in your environment.
In that case, specify which package to use with the --country_package option

Error margin

test_2.yaml:

- name: "Test defining a relative error margin"
period: 2015
relative_error_margin: 0.05
input_variables:
gross_salary: 1000

output_variables:
net_salary: 780 # the right value is 800

- name: "Test defining an absolute error margin"
absolute_error_margin: 10
period: 2015
input_variables:
gross_salary: 1000

output_variables:
net_salary: 790 # the right value is 800

test_3.yaml:

90 Chapter 10. Openfisca Python API

OpenFisca, Release

- name: "Test not defining any error margin"
period: 2015
input_variables:
gross_salary: 1000

output_variables:
net_salary: 795 # the right value is 800

Command line:

openfisca-run-test test_2.yaml
Success: the test pass, as the actual results are within the error margins

openfisca-run-test test_3.yaml
Failure: the test does not pass, as its error margin is by default 0

Name filter

test_4.yaml:

- name: "Test containing the word openfisca in its name"
period: 2015
input_variables:
gross_salary: 1000

output_variables:
net_salary: 800

- name: "Test that contains the magic word in its keywords"
keywords:
- some keyword
- openfisca

period: 2015
input_variables:
gross_salary: 1000

output_variables:
net_salary: 800

- name: "Some other test that fails"
period: 2015
input_variables:
gross_salary: 1000

output_variables:
net_salary: 0

Command line:

openfisca-run-test test_4.yaml
Failure: the third test does not pass

openfisca-run-test -n openfisca test_4.yaml
Success: the third test is not executed, as it doesn't contain the word 'openfisca'

Note that if a test file name contains the name filter, all the inner tests will be executed.

10.12. openfisca-run-test 91

OpenFisca, Release

Extensions

Let’s now assume an extension to openfisca_france, openfisca_paris is installed on our system, defines
the variable paris_housing_benefit, and that this variable is worth 200 if net_salary is 0.

test_5.yaml:

- name: "Test using an extension"
period: 2015
input_variables:
net_salary: 0

output_variables:
paris_housing_benefit: 200

Command line:

openfisca-run-test test_5.yaml
Failure: the test returns an error:
the country package openfisca_france does not references a variable named paris_
→˓housing_benefit

openfisca-run-test -e openfisca_paris test_5.yaml
Success: The test passes, as the extension is loaded in the tax benefit system
→˓before running the test

Reforms

Let’s assume that I want to test a reform that lowers net_salary to 60% of gross_salary (instead of 80% in
the regular openfisca_france).

This reform is called increase_cotisation and available in the python module openfisca_france.
reforms.increase_cotisation.

test_6.yaml:

- name: "Test on a reform"
period: 2015
input_variables:
gross_salary: 1000

output_variables:
net_salary: 600

Command line:

openfisca-run-test test_6.yaml
Failure: the test does not pass, as the regular openfisca_france is used

openfisca-run-test -r openfisca_france.reforms.increase_cotisation.increase_
→˓cotisation test_5.yaml
Success: The test passes, as the increase_cotisation reform is applied

openfisca serve

92 Chapter 10. Openfisca Python API

OpenFisca, Release

usage: openfisca serve [-h] [-c COUNTRY_PACKAGE]
[-e [EXTENSIONS [EXTENSIONS ...]]]
[-r [REFORMS [REFORMS ...]]] [-p PORT]
[--tracker-url TRACKER_URL]
[--tracker-idsite TRACKER_IDSITE]
[--tracker-token TRACKER_TOKEN]
[--welcome-message WELCOME_MESSAGE]
[-f CONFIGURATION_FILE]

Named Arguments

-c, --country-package

-e, --extensions

-r, --reforms

-p, --port

--tracker-url

--tracker-idsite

--tracker-token

--welcome-message

-f, --configuration-file

Additional arguments

openfisca serve uses gunicorn under the hood. In addition to the arguments listed above, you can use
any gunicorn arguments when running openfisca serve (e.g. --reload, --workers, --timeout,
--bind). See:

gunicorn --help

Examples

Basic use

openfisca serve --country-package openfisca_france

Serving extensions

openfisca serve --country-package openfisca_france --extensions openfisca_paris

Serving reforms

openfisca serve --country-package openfisca_france --reforms openfisca_france.reforms.
→˓plf2015.plf2015

10.13. openfisca serve 93

OpenFisca, Release

Using a configuration file

You can setup openfisca serve using a configuration file. Be careful as parameters with a ‘-‘ in their name on
command line change to an ‘_’ when used from the config file. See this example of configuration:

config.py:

port = 4000
workers = 4
bind = '0.0.0.0:{}'.format(port)
country_package = 'openfisca_france'
extensions = ['openfisca_paris']

Command line:

openfisca serve --configuration-file config.py

94 Chapter 10. Openfisca Python API

Python Module Index

o
openfisca_core.holders, 87
openfisca_core.parameters, 79
openfisca_core.reforms, 81
openfisca_core.scripts.simulation_generator,

88
openfisca_core.taxbenefitsystems, 75
openfisca_core.tools.test_runner, 84
openfisca_core.tracers, 85
openfisca_core.variables, 77

95

Index

Symbols
__call__() (openfisca_core.entities.Entity method), 82

A
add_child() (openfisca_core.parameters.ParameterNode

method), 80
add_variable() (openfisca_core.taxbenefitsystems.TaxBenefitSystem

method), 75
add_variables() (openfisca_core.taxbenefitsystems.TaxBenefitSystem

method), 75
add_variables_from_directory() (open-

fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 75

add_variables_from_file() (open-
fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 75

all() (openfisca_core.entities.GroupEntity method), 83
any() (openfisca_core.entities.GroupEntity method), 83
apply_reform() (openfisca_core.taxbenefitsystems.TaxBenefitSystem

method), 76

B
baseline_variable (openfisca_core.variables.Variable at-

tribute), 78
Bracket (class in openfisca_core.parameters), 79

C
calculate() (openfisca_core.simulations.Simulation

method), 81
check_node_vectorisable() (open-

fisca_core.parameters.VectorialParameterNodeAtInstant
static method), 80

clone() (openfisca_core.holders.Holder method), 87

D
decode() (openfisca_core.indexed_enums.EnumArray

method), 87
default_array() (openfisca_core.holders.Holder method),

87

default_value (openfisca_core.variables.Variable at-
tribute), 78

definition_period (openfisca_core.variables.Variable at-
tribute), 77

delete_arrays() (openfisca_core.holders.Holder method),
87

documentation (openfisca_core.variables.Variable at-
tribute), 78

dtype (openfisca_core.variables.Variable attribute), 78

E
encode() (openfisca_core.indexed_enums.Enum class

method), 86
end (openfisca_core.variables.Variable attribute), 78
Entity (class in openfisca_core.entities), 82
entity (openfisca_core.variables.Variable attribute), 77
Enum (class in openfisca_core.indexed_enums), 86
EnumArray (class in openfisca_core.indexed_enums), 87

F
formulas (openfisca_core.variables.Variable attribute), 77

G
generate_tests() (in module open-

fisca_core.tools.test_runner), 84
get_array() (openfisca_core.holders.Holder method), 87
get_array() (openfisca_core.simulations.Simulation

method), 82
get_descendants() (open-

fisca_core.parameters.ParameterNode method),
80

get_formula() (openfisca_core.variables.Variable
method), 78

get_holder() (openfisca_core.simulations.Simulation
method), 82

get_introspection_data() (open-
fisca_core.variables.Variable class method),
78

get_known_periods() (openfisca_core.holders.Holder
method), 87

96

OpenFisca, Release

get_memory_usage() (openfisca_core.holders.Holder
method), 87

get_memory_usage() (open-
fisca_core.simulations.Simulation method),
82

get_neutralized_variable() (in module open-
fisca_core.variables), 79

get_package_metadata() (open-
fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 76

get_parameters_at_instant() (open-
fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 76

get_rank() (openfisca_core.entities.PersonEntity
method), 82

get_variable() (openfisca_core.taxbenefitsystems.TaxBenefitSystem
method), 76

get_variables() (openfisca_core.taxbenefitsystems.TaxBenefitSystem
method), 76

GroupEntity (class in openfisca_core.entities), 83

H
has_role() (openfisca_core.entities.PersonEntity method),

82
Holder (class in openfisca_core.holders), 87

I
is_input_variable() (openfisca_core.variables.Variable

method), 78
is_neutralized (openfisca_core.variables.Variable at-

tribute), 78

J
json_type (openfisca_core.variables.Variable attribute),

78

L
label (openfisca_core.variables.Variable attribute), 78
load_extension() (open-

fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 76

load_parameter_file() (in module open-
fisca_core.parameters), 81

load_parameters() (open-
fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 77

M
make_simulation() (in module open-

fisca_core.scripts.simulation_generator),
88

max() (openfisca_core.entities.GroupEntity method), 83
max_length (openfisca_core.variables.Variable attribute),

78

merge() (openfisca_core.parameters.ParameterNode
method), 80

min() (openfisca_core.entities.GroupEntity method), 83
modify_parameters() (openfisca_core.reforms.Reform

method), 81

N
nb_persons() (openfisca_core.entities.GroupEntity

method), 84
neutralize_variable() (open-

fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 77

O
openfisca_core.holders (module), 87
openfisca_core.parameters (module), 79
openfisca_core.reforms (module), 81
openfisca_core.scripts.simulation_generator (module), 88
openfisca_core.taxbenefitsystems (module), 75
openfisca_core.tools.test_runner (module), 84
openfisca_core.tracers (module), 85
openfisca_core.variables (module), 77

P
Parameter (class in openfisca_core.parameters), 79
ParameterAtInstant (class in openfisca_core.parameters),

80
ParameterNode (class in openfisca_core.parameters), 80
ParameterNodeAtInstant (class in open-

fisca_core.parameters), 80
ParameterNotFound, 80
ParameterParsingError, 80
parameters (openfisca_core.taxbenefitsystems.TaxBenefitSystem

attribute), 75
parse_formula_name() (open-

fisca_core.variables.Variable method), 79
PersonEntity (class in openfisca_core.entities), 82
possible_values (openfisca_core.variables.Variable

attribute), 78
print_computation_log() (openfisca_core.tracers.Tracer

method), 85
print_trace() (openfisca_core.tracers.Tracer method), 85

R
randomly_init_variable() (in module open-

fisca_core.scripts.simulation_generator),
89

record_calculation_abortion() (open-
fisca_core.tracers.Tracer method), 86

record_calculation_end() (openfisca_core.tracers.Tracer
method), 86

record_calculation_start() (openfisca_core.tracers.Tracer
method), 86

Index 97

OpenFisca, Release

reference (openfisca_core.variables.Variable attribute), 78
Reform (class in openfisca_core.reforms), 81
replace_variable() (open-

fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 77

requested_calculations (openfisca_core.tracers.Tracer at-
tribute), 85

run_tests() (in module openfisca_core.tools.test_runner),
84

S
Scale (class in openfisca_core.parameters), 80
set_input (openfisca_core.variables.Variable attribute), 78
set_input() (openfisca_core.holders.Holder method), 88
set_input_dispatch_by_period() (in module open-

fisca_core.holders), 88
set_input_divide_by_period() (in module open-

fisca_core.holders), 88
Simulation (class in openfisca_core.simulations), 81
stack (openfisca_core.tracers.Tracer attribute), 85
sum() (openfisca_core.entities.GroupEntity method), 84

T
TaxBenefitSystem (class in open-

fisca_core.taxbenefitsystems), 75
trace (openfisca_core.tracers.Tracer attribute), 85
Tracer (class in openfisca_core.tracers), 85

U
unit (openfisca_core.variables.Variable attribute), 78
update() (openfisca_core.parameters.Parameter method),

80
update_variable() (open-

fisca_core.taxbenefitsystems.TaxBenefitSystem
method), 77

usage_stats (openfisca_core.tracers.Tracer attribute), 85

V
value_type (openfisca_core.variables.Variable attribute),

77
values_list (openfisca_core.parameters.Parameter at-

tribute), 79
Variable (class in openfisca_core.variables), 77
VariableNameConflict, 77
VectorialParameterNodeAtInstant (class in open-

fisca_core.parameters), 80

98 Index

	Introduction
	Key concepts
	From law to code
	OpenFisca Web API
	Troubleshooting
	Recipes for OpenFisca
	Publishing results based on OpenFisca
	Community
	Contribute
	Openfisca Python API
	Python Module Index

